空調(diào)熱舒適度預(yù)測(cè)及控制算法研究
[Abstract]:With the continuous improvement of living standards, people's requirements for the quality of life are becoming higher and higher. In modern life, people's work, entertainment, life and so on most of the time are in the indoor, therefore, people's demand for indoor environmental quality is also increasing. In order to adapt to people's pursuit of comfortable, energy saving and healthy indoor environment, this paper studies the prediction modeling of indoor thermal comfort and the application of indoor thermal comfort control in air conditioning system. To solve the problem that thermal comfort prediction is a complex nonlinear process and is not convenient for the real-time control of air conditioning, an improved particle swarm optimization algorithm (PSO) is proposed to optimize the thermal comfort prediction model of backpropagation (BP) neural network. By using PSO algorithm to optimize the initial weights and thresholds of BP neural networks, this prediction model improves the problems of slow convergence speed and sensitivity to the initial network values of the traditional BP algorithm. At the same time, aiming at the shortcomings of standard PSO algorithm, such as premature convergence and weak local optimization ability, the corresponding improvement strategy is proposed, which further improves the ability of PSO to optimize BP neural network. The experimental results show that the thermal comfort prediction model based on the improved PSO-BP algorithm is more accurate than the traditional BP model and the standard PSO-BP model. In order to solve the problem of indoor thermal comfort control applied in air conditioning system, this paper analyzes and compares the control variables, control methods and control algorithms, and finally determines the temperature and wind speed as the control variables in the system. The thermal comfort control of indoor environment is realized by direct control of thermal comfort and intelligent fuzzy control algorithm. At the same time, through the study of the design steps and key points of the fuzzy controller, the thermal comfort fuzzy controller is designed, and the simulation of the thermal comfort fuzzy controller of the air conditioning system is carried out. The simulation results show that the performance of the fuzzy controller designed in this paper is better than that of the traditional PID controller, and the thermal comfort fuzzy control system can perform better thermal comfort control than the traditional temperature control system. And can provide a more comfortable indoor environment.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP18;TM925.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張申;陳軍權(quán);張典;;基于神經(jīng)網(wǎng)絡(luò)的采空區(qū)自燃預(yù)測(cè)[J];傳感器與微系統(tǒng);2012年05期
2 田亮 ,劉鑫屏;中央空調(diào)房間溫度模糊控制器的設(shè)計(jì)[J];電子技術(shù)應(yīng)用;2002年04期
3 李永忠;楊鴿;徐靜;趙博;孫彥;;基于粒子群優(yōu)化的聚類入侵檢測(cè)算法[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 白榮順;;室內(nèi)熱舒適度測(cè)試與評(píng)價(jià)[J];建筑;2007年19期
5 于航,夏清,晉欣橋,肖賦;以PMV為基礎(chǔ)的模糊控制器在VAV空調(diào)系統(tǒng)中的應(yīng)用[J];節(jié)能;2001年04期
6 肖立中;邵志清;錢夕元;;一種用于網(wǎng)絡(luò)入侵檢測(cè)的雜交聚類算法研究[J];計(jì)算機(jī)工程;2007年04期
7 李婷;陳淵睿;;室內(nèi)環(huán)境舒適度的神經(jīng)網(wǎng)絡(luò)建模與仿真[J];計(jì)算機(jī)仿真;2011年06期
8 王丹;曹紅奮;;基于PMV控制目標(biāo)的舒適性空調(diào)應(yīng)用研究[J];潔凈與空調(diào)技術(shù);2011年01期
9 段培永;郭東東;李慧;段晨旭;;一種基于數(shù)據(jù)的夏季居住環(huán)境熱舒適度控制方法[J];山東建筑大學(xué)學(xué)報(bào);2011年01期
10 紀(jì)秀玲,李國(guó)忠,戴自祝;室內(nèi)熱環(huán)境舒適性的影響因素及預(yù)測(cè)評(píng)價(jià)研究進(jìn)展[J];衛(wèi)生研究;2003年03期
本文編號(hào):2228956
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2228956.html