天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

基于模擬退火優(yōu)化支持向量機的電力變壓器故障診斷研究

發(fā)布時間:2018-09-04 17:54
【摘要】:電力變壓器是電力系統(tǒng)的重要組成成分,它的運行情況直接關(guān)系到電力系統(tǒng)總體的安全性和穩(wěn)定性。由于其內(nèi)部結(jié)構(gòu)的復(fù)雜性,運行環(huán)境的特殊性,在變壓器長期運行中,發(fā)生故障是不可避免的。隨著社會對供電質(zhì)量、可靠性、安全性要求的提高,研究開發(fā)電力變壓器的故障診斷技術(shù)對提高電力系統(tǒng)運行可靠性和科學(xué)管理水平是十分重要的。 在研究基于DGA(Dissolved Gas Analysis,油中溶解氣體分析)的變壓器問題診斷技術(shù)現(xiàn)狀的基礎(chǔ)上,傳統(tǒng)經(jīng)典的三比值法存在比值邊界模糊的缺點,因此智能故障診斷技術(shù)已成為研究趨勢。論文提出了將SA(Simulated Annealing,模擬退火算法)和SVM(SupportVector Machine,支持向量機)相結(jié)合,用模擬退火算法優(yōu)化支持向量機參數(shù),,獲得模擬退火支持向量機模型(記作SA-SVM)的思想,以提高變壓器故障診斷準(zhǔn)確率。 論文首先對基于DGA變壓器故障診斷技術(shù)開展了探討,分析了以往各種比值法的優(yōu)勢和劣勢,以此為前提探討了人工智能變壓器故障診斷的必要性。為了全面地反映變壓器內(nèi)部故障與特征氣體之間的關(guān)系,提出采用5種特征氣體濃度比值共計15組數(shù)據(jù)作為特征預(yù)輸入量,并采用RFE(Recursive Feature Elimination,回歸特征消去)算法對15個特征量進行篩選,將篩選后特征量作為最終故障診斷模型的輸入。在支持向量機分類器模型的建立中,深入研究與之相關(guān)的支持向量機多分類方法、支持向量機核函數(shù)選擇以及支持向量機參數(shù)尋優(yōu)等問題。在對支持向量機分類器分類效果影響最大的參數(shù)尋優(yōu)問題上,引入模擬退火算法進行參數(shù)尋優(yōu),獲得模擬退火支持向量機參數(shù)優(yōu)化流程。最后,以基因選擇算法篩選后的特征子集為輸入,變壓器故障診斷類型為輸出,獲得基于RFE-SA-SVM的變壓器故障診斷模型。為了避免在Matlab下編程函數(shù)句柄的抽象性,給出其故障診斷模型的GUI界面。通過該診斷模型與單一模型的對比驗證,顯示了所建立的RFE-SA-SVM模型的優(yōu)越性。使用該模型進行實例分析,驗證了該模型故障診斷方法的有效性,并具有一定的應(yīng)用價值。
[Abstract]:Power transformer is an important component of power system, its operation is directly related to the overall security and stability of power system. Due to the complexity of its internal structure and the particularity of the operating environment, it is inevitable that the transformer will fail in the long run. With the improvement of power supply quality, reliability and safety, it is very important to study and develop the fault diagnosis technology of power transformer to improve the reliability of power system operation and the level of scientific management. Based on the research of transformer diagnosis technology based on the analysis of dissolved gas in DGA (Dissolved Gas Analysis, oil, the traditional three-ratio method has the shortcoming of fuzzy ratio boundary, so intelligent fault diagnosis technology has become the research trend. In this paper, the idea of combining SA (Simulated Annealing, simulated annealing algorithm with SVM (SupportVector Machine, support vector machine to optimize support vector machine parameters and obtain simulated annealing support vector machine model (SA-SVM) is proposed. In order to improve the accuracy of transformer fault diagnosis. In this paper, the fault diagnosis technology of transformer based on DGA is discussed, and the advantages and disadvantages of each ratio method in the past are analyzed. The necessity of transformer fault diagnosis based on artificial intelligence is discussed. In order to fully reflect the relationship between the internal fault of transformer and the characteristic gas, a total of 15 groups of data of five kinds of characteristic gas concentration ratio are proposed as the characteristic pre-input quantity. The RFE (Recursive Feature Elimination, regression feature elimination algorithm is used to screen the 15 feature variables, and the filtered feature quantity is used as the input of the final fault diagnosis model. In the establishment of support vector machine classifier model, the related multi-classification methods of support vector machine, kernel function selection of support vector machine and parameter optimization of support vector machine are deeply studied. In the parameter optimization problem which has the greatest influence on the classification effect of support vector machine classifier, the simulated annealing algorithm is introduced to optimize the parameters, and the simulated annealing support vector machine parameter optimization flow is obtained. Finally, the transformer fault diagnosis model based on RFE-SA-SVM is obtained by taking the feature subset selected by gene selection algorithm as input and transformer fault diagnosis type as output. In order to avoid the abstraction of programming function handle in Matlab, the GUI interface of its fault diagnosis model is given. The superiority of the established RFE-SA-SVM model is demonstrated by comparing the diagnostic model with the single model. The effectiveness of the fault diagnosis method of the model is verified by using the model for example analysis, and it has certain application value.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM41

【參考文獻】

相關(guān)期刊論文 前10條

1 張利剛;變壓器油中溶解氣體的成分和含量與充油電力設(shè)備絕緣故障診斷的關(guān)系[J];變壓器;2000年03期

2 趙文清;朱永利;;電力變壓器狀態(tài)評估綜述[J];變壓器;2007年11期

3 廖瑞金,姚陳果,孫才新,顧樂觀;多專家合作診斷變壓器絕緣故障的黑板型專家系統(tǒng)[J];電工技術(shù)學(xué)報;2002年01期

4 章政,楊荊林,肖登明,劉奕路;基于油中溶解氣體分析的變壓器絕緣故障診斷方法的研究和發(fā)展[J];電力設(shè)備;2004年01期

5 蘇鵬聲,王歡;電力系統(tǒng)設(shè)備狀態(tài)監(jiān)測與故障診斷技術(shù)分析[J];電力系統(tǒng)自動化;2003年01期

6 束洪春,孫向飛,于繼來;粗糙集理論在電力系統(tǒng)中的應(yīng)用[J];電力系統(tǒng)自動化;2004年03期

7 呂干云,程浩忠,董立新,翟海保;基于多級支持向量機分類器的電力變壓器故障識別[J];電力系統(tǒng)及其自動化學(xué)報;2005年01期

8 聶冰;丁明艷;李文;;基于粗糙集屬性重要性的數(shù)據(jù)約簡[J];電子測量技術(shù);2008年05期

9 董明,趙文彬,嚴(yán)璋;油氣分析診斷變壓器故障方法的改進[J];高電壓技術(shù);2002年04期

10 余杰;周浩;;變壓器油氣分析故障的免疫算法診斷模型[J];高電壓技術(shù);2006年03期



本文編號:2222910

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2222910.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4f7d8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com