天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

生物陰極微生物燃料電池處理垃圾滲濾液及產(chǎn)電性能研究

發(fā)布時間:2018-08-17 17:44
【摘要】:垃圾滲濾液因其較高的COD、BOD、NH3-N、重金屬離子及復(fù)雜的有毒有機污染物等,而呈現(xiàn)出色度大、臭味大、毒性大及難處理的特點,對環(huán)境危害嚴(yán)重。而生物陰極型微生物燃料電池(MFC)在具備微生物燃料電池產(chǎn)電及去除污染物的基礎(chǔ)上,具有構(gòu)建運行成本低、避免二次污染、可進(jìn)行反硝化反應(yīng)實現(xiàn)脫氮等優(yōu)點。本文通過以鐵氰化鉀為陰極電子受體的雙室化學(xué)MFC為參照,構(gòu)建雙室曝氣MFC和雙室不曝氣MFC,跟蹤對比各MFCs的啟動情況及性能,,并在此基礎(chǔ)上對不同陰極型MFCs處理垃圾滲濾液的產(chǎn)電及對污染物的降解效果進(jìn)行探索。 MFC啟動實質(zhì)上是產(chǎn)電微生物在陽極表面逐漸富集形成生物膜的過程,在以NaAC為陽極碳源的條件下,啟動用時長短依次為:化學(xué)MFC (1d)曝氣MFC (5d)不曝氣MFC(10d);穩(wěn)定周期長短依次為:不曝氣MFC (30d)曝氣MFC (25d)化學(xué)MFC (20d);產(chǎn)電穩(wěn)定電壓的大小依次為:曝氣MFC (618mV)不曝氣MFC(561mV)化學(xué)MFC (467mV)。電池啟動完成后穩(wěn)定運行,開路電壓大小順序為:曝氣MFC (835.30mV)不曝氣MFC (790.26mV)化學(xué)MFC (546.23mV);最大功率密度大小順序為:曝氣MFC (442.54mW/m3)不曝氣MFC(237.04mW/m3)化學(xué)MFC(201.8mW/m3);電池自身內(nèi)阻大小順序為:不曝氣MFC(450)曝氣MFC(600)化學(xué)MFC(620)。以NaAC為陽極碳源的條件下,生物陰極MFC的產(chǎn)電性能要好于以鐵氰化鉀為電子受體的化學(xué)陰極MFC。 不同陰極型MFCs處理垃圾滲濾液的產(chǎn)電電壓與陽極滲濾液的稀釋倍數(shù)間呈現(xiàn)一定的周期性規(guī)律,各周期內(nèi)電池的平均最高產(chǎn)電電壓依次為化學(xué)MFC(約630mV)曝氣MFC(約380mV)不曝氣MFC(約330mV);各周期內(nèi)產(chǎn)電電壓變化受陰極液的影響較大,化學(xué)MFC主要受鐵氰化鉀的含量影響,曝氣MFC主要與陰極溶解氧量及微生物菌群的穩(wěn)定有關(guān),不曝氣MFC主要受陰極營養(yǎng)物質(zhì)含量影響。 在處理不同體積比的滲濾液時,各MFCs陽極COD去除率的變化趨勢與輸出電壓的基本一致即先增加后降低,曝氣/不曝氣MFC陰極COD去除率高于陽極去除率;各組MFCs庫倫效率隨陽極初始滲濾液比例增大而依次降低,各組MFCs中最大庫倫效率依次為曝氣MFC(10.26%)化學(xué)MFC(4.3%)不曝氣MFC(1.46%)。不曝氣MFC更利于滲濾液中COD的去除,但曝氣MFC更利于將從COD獲得的能量轉(zhuǎn)化為電能。 3組MFCs陽極NH4+-N的去除量也隨滲濾液比例的增加而增大,且在濃度梯度的作用下部分遷移至陰極;NO3--N去除率均呈現(xiàn)升高后降低的趨勢,且陽極室均未發(fā)現(xiàn)NO2--N的積累現(xiàn)象;同等稀釋倍數(shù)的滲濾液經(jīng)處理后,三種N的去除量依次為曝氣MFC不曝氣MFC化學(xué)MFC。結(jié)果表明,曝氣MFC更利于滲濾液中N的去除。另外,陰極緩沖液對MFC處理垃圾滲濾液液有一定影響,其中擴散至陽極的TP隨滲濾液濃度的升高而減小,且低于陰極TP的去除量;各組MFCs的陽極出水中TP均維持在一定的濃度范圍,依次為曝氣MFC(16.55mg/L)不曝氣MFC (19.13mg/L)化學(xué)MFC (23.65mg/L)。 化學(xué)MFC和曝氣MFC利用100%的垃圾滲濾液進(jìn)行產(chǎn)電時,最大輸出電壓分別為698.9715mV、459.4029mV,最大輸出功率為197.73mW/m3、147.65mW/m3,內(nèi)阻均上升分別為900、700;經(jīng)過45d運行產(chǎn)電后,COD由初始的6332.11mg/L分別降至2752.41mg/L、2261.72mg/L,去除率分別為56.53%、64.28%,庫倫效率分別為14.28%、17.10%;氨氮的去除比例分別為53.78%、58.09%,均出現(xiàn)了陽極室中高濃度的NH4+通過質(zhì)子交換膜擴散到陰極的現(xiàn)象。
[Abstract]:Landfill leachate is harmful to the environment because of its high COD, BOD, NH3-N, heavy metal ions and complex toxic organic pollutants. Biocathodic microbial fuel cell (MFC) has the characteristics of high excellence, strong odor, high toxicity and difficult treatment, and it is harmful to the environment. In this paper, two-chamber aerated MFC and two-chamber non-aerated MFC were constructed by using potassium ferricyanide as cathode electron acceptor, and the start-up and performance of each MFC were tracked and compared. On this basis, different cathode MFCs were used to treat waste. The electricity generation of landfill leachate and the degradation effect of pollutants are explored.
MFC start-up is essentially a process of gradual enrichment of microorganisms on the anode surface to form biofilm. Under the condition of NaAC as the anode carbon source, the start-up time of MFC (1d) aerated MFC (5d) non-aerated MFC (10d), and the stable period of MFC (30d) aerated MFC (25d) chemical MFC (20d) is in turn. The order of voltage is: aerated MFC (618 mV) non-aerated MFC (561 mV) chemical MFC (467 mV). After the start-up, the battery runs stably. The order of open-circuit voltage is: aerated MFC (835.30 mV) non-aerated MFC (790.26 mV) chemical MFC (546.23 mV); the order of maximum power density is: aerated MFC (442.54 mW/m3) non-aerated MFC (237.04 mW/m3). MFC (201.8 mW/m3) was used as the cathode carbon source. The order of internal resistance of the cell was as follows: no aerated MFC (450) aerated MFC (600) chemical MFC (620). With NaAC as the anode carbon source, the power generation performance of the cathode MFC was better than that of the cathode MFC with potassium ferricyanide as the electron acceptor.
There is a periodic relationship between the generation voltage of different cathode MFCs and the dilution ratio of anode leachate. The average maximum generation voltage of batteries in each cycle is chemical MFC (about 630 mV) aerated MFC (about 380 mV) non-aerated MFC (about 330 mV). Chemical MFC is mainly affected by the content of potassium ferricyanide, aerated MFC is mainly related to the cathodic dissolved oxygen and the stability of microbial flora, non-aerated MFC is mainly affected by the content of cathodic nutrients.
In the treatment of leachate with different volume ratios, the change trend of COD removal rate of MFCs anode is basically the same as that of output voltage, that is, the COD removal rate of aerated/non-aerated MFC cathode is higher than that of anode; the Coulomb efficiency of MFCs in each group decreases with the increase of initial leachate ratio and the maximum Coulomb efficiency of MFCs in each group. The order is aerated MFC (10.26%) chemical MFC (4.3%) non-aerated MFC (1.46%).
The removal rate of NH4 + - N increased with the increase of leachate proportion, and partially migrated to cathode under the action of concentration gradient; the removal rate of NO3 - N increased and then decreased, and the accumulation of NO2 - N was not found in the anode chamber; the removal rate of three kinds of N was in turn aerated after the treatment of leachate with the same dilution ratio. In addition, cathode buffer had some effect on MFC treatment of landfill leachate, in which TP diffused to the anode decreased with the leachate concentration increasing, and was lower than cathode TP removal; TP in the anode effluent of all MFCs maintained a certain concentration. The degree range is aeration MFC (16.55mg/L), non aeration MFC (19.13mg/L) chemical MFC (23.65mg/L).
The maximum output voltage of chemical MFC and aerated MFC was 698.9715 mV, 459.4029 mV, the maximum output power was 197.73 mW/m3, 147.65 mW/m3, and the internal resistance increased by 900,700 respectively when 100% landfill leachate was used for power generation. After 45 days of operation, COD decreased from 6332.11 mg/L to 2752.41 mg/L and 2261.72 mg/L, respectively, and the removal rate was 5.73 mW/m3 and 147.65 mW/m3, respectively. The removal ratios of ammonia and nitrogen were 53.78% and 58.09%, respectively. The diffusion of NH4+ from anode chamber to cathode through proton exchange membrane was observed.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:X703;TM911.45

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 詹亞力;王琴;閆光緒;郭紹輝;;高錳酸鉀作陰極的微生物燃料電池[J];高等學(xué)校化學(xué)學(xué)報;2008年03期

2 黃霞;梁鵬;曹效鑫;范明志;;無介體微生物燃料電池的研究進(jìn)展[J];中國給水排水;2007年04期

3 謝珊;梁鵬;李亮;黃霞;;兩瓶型微生物燃料電池處理垃圾滲濾液的研究[J];中國給水排水;2011年15期

4 孫健;胡勇有;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[J];工業(yè)用水與廢水;2008年01期

5 何輝;馮雅麗;李浩然;李頂杰;;利用小球藻構(gòu)建微生物燃料電池[J];過程工程學(xué)報;2009年01期

6 劉軍,鮑林發(fā),汪蘋;運用GC-MS聯(lián)用技術(shù)對垃圾滲濾液中有機污染物成分的分析[J];環(huán)境污染治理技術(shù)與設(shè)備;2003年08期

7 周少奇,楊志泉;廣州垃圾填埋滲濾液中有機污染物的去除效果[J];環(huán)境科學(xué);2005年03期

8 許玫英;方衛(wèi);張麗娟;梁燕珍;孫國萍;;生物脫氮新技術(shù)在垃圾滲濾液工程化處理中的應(yīng)用[J];環(huán)境科學(xué);2007年03期

9 謝珊;陳陽;梁鵬;黃霞;;好氧生物陰極型微生物燃料電池的同時硝化和產(chǎn)電的研究[J];環(huán)境科學(xué);2010年07期

10 張曉艷;滕洪輝;;以垃圾滲濾液為燃料的微生物燃料電池產(chǎn)電性能[J];吉林大學(xué)學(xué)報(理學(xué)版);2011年06期



本文編號:2188404

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2188404.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5070d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com