電動(dòng)汽車中鋰電池智能管理系統(tǒng)研究
[Abstract]:The energy problem of automobile is an urgent problem for our country to pursue energy conservation and environmental protection and ease the shortage of resources. With the unremitting efforts of a large number of researchers, the main power components of electric vehicles have developed from early lead-acid batteries to widely used lithium batteries. At present, the development of lithium battery materials and technology is slow, and it is in the bottleneck of battery development. Therefore, it is of great significance to develop a battery management system that can give full play to the performance of lithium battery. At present, in the research of battery management system, most researchers use the amperometric method to estimate the charge state of lithium battery. This algorithm is extensive and can not effectively grasp the real-time state of the battery. For batteries in power vehicles, real-time control of the use of the battery can improve the battery life, efficiency and loss. This paper mainly analyzes the main charging state estimation technology and voltage equalization control strategy used in the power battery of electric vehicle, compares and analyzes the charge state estimation technology in the commonly used lithium battery management system. A novel charge calculation method based on DRNN neural network is proposed, and the simulation experiment is carried out, and the external voltage control strategy is chosen as the voltage equalization control strategy for the inconsistency between the lithium battery cell and the single cell. On the basis of using TMS320F2812 to design the hardware module and peripheral circuit of the power management system, a new type of LTC6802 chip is used as the management chip of the battery subboard, and the software of the system is designed by modularization. The power management system is decomposed into a general structure, the CAN bus is used in the communication method, and the anti-interference measures of hardware and software are adopted to ensure the stability of the system. Finally, the important parts of the power management system are simulated and the simulation results are analyzed. The development of the system can ensure that the performance of lithium battery in electric vehicle is always in a good operation state and play its greatest role.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U469.72;TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范輝,王大志,朱建光;基于DSP的電動(dòng)汽車CAN總線通訊技術(shù)設(shè)計(jì)[J];成組技術(shù)與生產(chǎn)現(xiàn)代化;2004年01期
2 古啟軍,陳以方,吳知非;串聯(lián)電池組電壓測(cè)量方法的研究[J];電測(cè)與儀表;2002年05期
3 朱元,韓曉東,田光宇;電動(dòng)汽車動(dòng)力電池SOC預(yù)測(cè)技術(shù)研究[J];電源技術(shù);2000年03期
4 李一鳴;;通信開關(guān)電源的電磁干擾分析及抑制[J];大眾科技;2009年12期
5 邱玉鳳;江家發(fā);;新型高效綠色能源:鋰離子電池[J];化學(xué)教育;2011年08期
6 裴鋒;趙克剛;;電動(dòng)汽車動(dòng)力電池瞬態(tài)均衡控制策略研究[J];機(jī)電工程技術(shù);2008年08期
7 林成濤;陳全世;王軍平;黃文華;王燕超;;用改進(jìn)的安時(shí)計(jì)量法估計(jì)電動(dòng)汽車動(dòng)力電池SOC[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
8 李騰;林成濤;陳全世;;磷酸鐵鋰電池組成組過程的不一致性分析[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年07期
9 牛萌;姜久春;郭宏榆;;混合動(dòng)力車用電池均衡方案研究[J];微處理機(jī);2010年05期
10 盧娟,王輝;基于CAN總線的HEV數(shù)據(jù)采集顯示器的設(shè)計(jì)實(shí)現(xiàn)[J];微機(jī)發(fā)展;2003年07期
相關(guān)博士學(xué)位論文 前1條
1 南晉華;決策神經(jīng)網(wǎng)絡(luò)模型及應(yīng)用研究[D];華中科技大學(xué);2008年
,本文編號(hào):2176557
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2176557.html