天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

PET基柔性太陽能電池薄膜電極的制備及其光電轉(zhuǎn)換性能的研究

發(fā)布時間:2018-08-03 14:32
【摘要】:柔性有機(jī)太陽能電池由于其重量輕、成本低、容易加工、適于大面積生產(chǎn)等特點(diǎn)已經(jīng)引起人們的廣泛關(guān)注。但是傳統(tǒng)的機(jī)械脆性較高的透明導(dǎo)電電極,比如ITO薄膜等,其制備過程需要較高的熱處理溫度,難以滿足在熱敏感性的柔性聚合物基底上制備有機(jī)太陽能電池的薄膜電極的需要。另一方面,有機(jī)太陽能電池的穩(wěn)定性和能量轉(zhuǎn)換效率與傳統(tǒng)的無機(jī)太陽能電池相比也還是有一定的差距。因此眾多的研究者致力于研究光電性能好,柔韌性高,更適合于制備在熱敏感性的聚合物基底上的透明導(dǎo)電薄膜電極;同時,結(jié)合改善電極的結(jié)構(gòu)與形貌特點(diǎn)來進(jìn)一步提高電極性能,從而提高有機(jī)太陽能電池等光電器件的重要工作參數(shù),如能量轉(zhuǎn)化率,工作穩(wěn)定性等,為柔性光電器件的發(fā)展,奠定重要的實(shí)驗與技術(shù)基礎(chǔ)。本文通過室溫磁控濺射的方式,通過表面改性,微量摻雜,濺射參數(shù)控制等手段,實(shí)現(xiàn)了OMO表面結(jié)構(gòu)、形貌、性能的優(yōu)化控制,結(jié)合透明導(dǎo)電薄膜電極的微觀結(jié)構(gòu)特性,光電性能,機(jī)械性能,以及光電轉(zhuǎn)換特性的研究,探索了透明電極光電性能與薄膜微觀結(jié)構(gòu),表面形貌的相關(guān)性,揭示了其內(nèi)在聯(lián)系,并確立了幾種OMO結(jié)構(gòu)薄膜的最佳性能,為柔性太陽能電池等柔性光電器件的發(fā)展奠定技術(shù)基礎(chǔ)。主要的研究內(nèi)容包括: 第一,通過制備OMO(oxide-metal-oxide)三明治結(jié)構(gòu)的ITO-AgQxITO(IAOI)電極,有效地降低了薄膜電極的厚度,從而極大地改善了電極的柔韌性。本研究在OMO結(jié)構(gòu)的基礎(chǔ)上,對于中間層M (metal)進(jìn)行了改進(jìn),即通過對純Ag納米中間金屬層摻雜微量的O,使金屬Ag薄膜發(fā)生極微小的氧化成為AgOx薄膜,在極大地改善了中間層金屬Ag薄膜的透光性的同時,保持了金屬Ag的良好導(dǎo)電性能。相比于傳統(tǒng)的OMO電極和單層ITO電極,透光性能得到了大幅度提高,保持了相當(dāng)?shù)膶?dǎo)電性,從而采取此種電極作為有機(jī)太陽能電池的透明導(dǎo)電電極,將有機(jī)太陽能電池的能量轉(zhuǎn)換效率從由ITO為電極的4.72%提高到以IAOI為電極的5.88%,將效率提高了25%。通過彎曲實(shí)驗證實(shí)了這種IAOI薄膜電極具有和ITO-Ag-ITO(IAI)電極相似的柔韌性,適于柔性太陽能電池的電極制備。 第二,在ITO作為外層氧化物的OMO電極研究的基礎(chǔ)上,用ZnO代替ITO,從而制備出了不含In、透明導(dǎo)電性優(yōu)于傳統(tǒng)OMO結(jié)構(gòu)的2ZnO-Ag-ZnO(ZAZ)電極的ZnO-AgOx-ZnO(ZAOZ)電極。并且彎曲實(shí)驗表明,其柔韌性遠(yuǎn)遠(yuǎn)好于傳統(tǒng)單層ITO電極。由于ZnO與光活性聚合物層的能級匹配性,采用ZAOZ電極作為倒置結(jié)構(gòu)太陽能電池不僅光電轉(zhuǎn)換效率(6.34%)高于傳統(tǒng)ITO電極的太陽能電池(5.76%)和用ZnO-Ag-ZnO(ZAZ)作電極制備的太陽能電池(5.65%),而且由于采用了倒置結(jié)構(gòu),相比于傳統(tǒng)結(jié)構(gòu)的柔性有機(jī)太陽能電池的5天有效期,其穩(wěn)定性也得到了提高,在30天之后能量轉(zhuǎn)換效率依然高于初始效率的85%。 第三,在ITO-AgOx-ITO電極的基礎(chǔ)上,采用了納米顆粒陣列的三維結(jié)構(gòu),制備了三維ITO-AgOx-ITO納米顆粒陣列(IAOI-NPA)電極。由于采取了三維結(jié)構(gòu),這樣不僅由于降低了顆粒間連續(xù)薄膜層的厚度而使電極的柔韌性得到了很大的提高,而且通過調(diào)節(jié)納米顆粒間的距離,從而改進(jìn)了薄膜的減反射性,極大地降低了薄膜電極對于入射光的反射率,直接提高了透光性能。將此三維結(jié)構(gòu)的薄膜用于有機(jī)太陽能電池,相比于二維的ITO電極和ITO-Ag-ITO電極,不僅具有更優(yōu)異的光電性能,而且增大了電極和光活性聚合物的接觸面積,從而有效解決了盡量減小光活性層厚度以減小激子傳輸距離和增大光活性層厚度以增大光吸收的矛盾,同時垂直于基底方向的ITO納米顆粒陣列也為電荷的傳輸和收集提供了直接的路徑,從而大大地提高了電荷的傳輸和收集效率,從而提高了能量轉(zhuǎn)換效率,將傳統(tǒng)的平面ITO電極的太陽能電池轉(zhuǎn)換效率提高了22%。 通過以上內(nèi)容的研究,不僅解決了傳統(tǒng)OMO結(jié)構(gòu)中間金屬層厚度與光電性能之間的矛盾,加深了人們對于納米光電薄膜光學(xué)特性調(diào)控機(jī)理,電荷傳遞機(jī)制的理論認(rèn)識,而且有效地改善了ITO結(jié)構(gòu)電極的機(jī)械脆性,為實(shí)現(xiàn)柔性有機(jī)太陽能電池提供了技術(shù)支撐。而且通過對PET柔性基底簡單有效的表面改性,實(shí)現(xiàn)了三維透明薄膜電極的制備,為提高柔性有機(jī)太陽能電池的光電轉(zhuǎn)換效率提供了新思路。
[Abstract]:Flexible organic solar cells have attracted wide attention because of their light weight, low cost, easy processing and suitable for large area production. However, the traditional transparent and conductive electrodes with high mechanical brittleness, such as ITO films, need higher thermal temperature to meet the thermal sensitivity of flexible polymers. On the other hand, the stability and energy conversion efficiency of organic solar cells, on the other hand, still have a certain gap compared with the traditional inorganic solar cells. Therefore, many researchers are devoted to the study of good photoelectric properties, high flexibility, and more suitable for the preparation of thermal sensitivity. The transparent conductive film electrode on the polymer substrate, and the improvement of the electrode performance by improving the structure and morphology of the electrode, thus improving the important working parameters of the optoelectronic devices such as the organic solar cells, such as the energy conversion rate and the working stability, is an important experiment and technology for the development of the flexible optoelectronic devices. In this paper, by means of surface modification, micro doping and sputtering parameter control, the surface structure, morphology and properties of OMO are controlled by room temperature magnetron sputtering, and the microstructure characteristics of transparent conductive film electrode, photoelectric property, mechanical energy and photoelectric conversion characteristics are studied, and the transparent electric aurora is explored. The correlation between the electrical properties and the microstructure of the thin films and the surface morphology reveals the internal relations, and establishes the best properties of several OMO structural films, which lays a technical foundation for the development of flexible photovoltaic devices such as flexible solar cells. The main research contents include:
First, by preparing the ITO-AgQxITO (IAOI) electrode of the OMO (oxide-metal-oxide) sandwich structure, the thickness of the film electrode was effectively reduced and the flexibility of the electrode was greatly improved. On the basis of the OMO structure, this study improved the intermediate layer M (metal), that is, by doping a trace O in the pure Ag nanometer intermediate metal layer. The thin oxidation of metal Ag film becomes AgOx thin film, which greatly improves the transmittance of the metal Ag film in the middle layer, while maintaining the good conductivity of the metal Ag. Compared with the traditional OMO electrode and the single layer ITO electrode, the light transmittance has been greatly improved and the electrical conductivity is guaranteed, thus the electrode is taken as the electrode. For the transparent conducting electrode of the organic solar cell, the energy conversion efficiency of the organic solar cell is increased from 4.72% of the ITO electrode to 5.88% of the IAOI as the electrode. The efficiency is improved by the efficiency of 25%. through the bending test. It is proved that the IAOI thin film electrode has the flexibility similar to the ITO-Ag-ITO (IAI) electrode and is suitable for the flexible solar cell. Preparation of the electrode.
Second, on the basis of the study of ITO as the OMO electrode of outer oxide, using ZnO instead of ITO, the ZnO-AgOx-ZnO (ZAOZ) electrode of 2ZnO-Ag-ZnO (ZAZ) electrode without In and transparent conductivity is better than that of the traditional OMO structure. And the flexural experiment shows that its flexibility is far better than that of the traditional monolayer ITO electrode. The energy level matching of the layer, using the ZAOZ electrode as the inverted structure solar cell not only the photoelectric conversion efficiency (6.34%) higher than the traditional ITO electrode solar cell (5.76%) and the ZnO-Ag-ZnO (ZAZ) as the electrode of the solar cell (5.65%), and because of the inverted structure, compared to the traditional structure of the flexible organic solar cell of 5. The stability was also improved during the day of validity. After 30 days, the energy conversion efficiency is still higher than the initial efficiency of 85%..
Third, on the basis of the ITO-AgOx-ITO electrode, three dimensional ITO-AgOx-ITO nano particle array (IAOI-NPA) electrode was prepared by using the three-dimensional structure of the nanoparticle array. The distance between nanoscale particles improves the antireflection property of the film, greatly reduces the reflectivity of the film electrode to the incident light, and improves the light transmittance directly. The application of this three-dimensional structure film to the organic solar cell is not only superior to the two-dimensional ITO electrode and the ITO-Ag-ITO electrode, but also has more excellent photoelectric properties. The contact area of the electrode and the photoactive polymer is larger, which effectively solves the contradiction between reducing the thickness of the light active layer as much as possible to reduce the exciton transmission distance and increasing the thickness of the photoactive layer to increase the optical absorption. At the same time, the ITO nanoparticle array perpendicular to the direction of the substrate provides a direct path for the transmission and collection of charge. The earth improves the efficiency of charge transmission and collection, thus improving the efficiency of energy conversion. The efficiency of solar cells with traditional planar ITO electrodes is increased by 22%.
Through the study of the above contents, the contradiction between the thickness of the middle metal layer and the photoelectric properties of the traditional OMO structure is not only solved, but the theoretical understanding of the mechanism of the optical properties and charge transfer mechanism of the nanometer optoelectronic film is deepened, and the mechanical brittleness of the ITO structure electrode is improved effectively, so as to realize the flexible organic solar cell. It provides a technical support. And through the simple and effective surface modification of the PET flexible substrate, the preparation of the three-dimensional transparent thin film electrode has been realized, which provides a new idea for improving the photoelectric conversion efficiency of the flexible organic solar cells.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM914.42

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 ;Flexible organic light-emitting diodes with ITO/Ag/ITO multi-layers as anodes[J];Chinese Science Bulletin;2004年13期

,

本文編號:2162049

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2162049.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c5e06***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com