基于SCADA數(shù)據(jù)的風(fēng)電機(jī)組電控系統(tǒng)故障診斷研究
[Abstract]:The electric control system of wind turbine has realized the control of wind turbine, such as self-start / shutdown, steady grid-connected, manual and automatic no-disturbance switching, variable speed frequency conversion control, automatic yaw control, decoupling control, variable pitch control, etc. Data monitoring and processing, automatic protection and fault recording, etc. With the rapid development of wind power industry, the trouble detection of wind turbine electronic control system is discussed and studied in this paper. By collecting and analyzing wind speed and operating parameters of wind turbine, the paper discusses the faults of variable propeller and main control PLC in electronic control system. Firstly, the paper collects the complete data of a wind farm for one year, then combines the operation data and maintenance data to sort out the common types of faults in the wind turbine electronic control system, and then uses the time domain analysis method, respectively. The wavelet analysis method and adaptive Kurtosis analysis method in time-frequency domain analysis are used to diagnose and analyze the fault of electronic control system. Finally, the simulation results of the above methods are carried out through the actual wind field data. Time domain analysis, time and frequency domain analysis and adaptive Kurtosis analysis are used to diagnose the fault of electronic control system. The time domain analysis can only roughly diagnose whether the equipment is abnormal or not. There are many rotating parts in the electric control system of wind turbine, which will produce certain vibration signals. These vibration signals have the characteristics of periodic variation but non-stationary. The time-frequency domain analysis method and adaptive Kurtosis method are used to analyze the non-stationary signals in the wind turbine electrical control system. The results are obvious and suitable for the fault diagnosis of the electronic control system. On the MATLAB platform, by analyzing the power ratio data and comparing the mean value, variance, mean square amplitude and peak value, a certain rule of fault detection is obtained.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 傅質(zhì)馨;袁越;;海上風(fēng)電機(jī)組狀態(tài)監(jiān)控技術(shù)研究現(xiàn)狀與展望[J];電力系統(tǒng)自動(dòng)化;2012年21期
2 李輝;李學(xué)偉;胡姚剛;楊超;趙斌;;風(fēng)電機(jī)組運(yùn)行狀態(tài)參數(shù)的非等間隔灰色預(yù)測(cè)[J];電力系統(tǒng)自動(dòng)化;2012年09期
3 鄒見(jiàn)效;李丹;鄭剛;曾斌;彭超;;基于機(jī)組狀態(tài)分類的風(fēng)電場(chǎng)有功功率控制策略[J];電力系統(tǒng)自動(dòng)化;2011年24期
4 李輝;楊超;趙斌;唐顯虎;鄭維棋;;考慮變槳驅(qū)動(dòng)電機(jī)特性的風(fēng)電機(jī)組運(yùn)行性能仿真[J];電力系統(tǒng)保護(hù)與控制;2011年18期
5 梁偉宸;許湘蓮;龐可;楊明明;;風(fēng)電機(jī)組故障診斷實(shí)現(xiàn)方法探討[J];高壓電器;2011年08期
6 任海軍;何玉林;杜靜;黃帥;蘇東緒;李俊;;變速變槳距風(fēng)力機(jī)功率控制策略[J];電網(wǎng)技術(shù);2011年08期
7 李康;陳雪軍;石湘;陳海小;胡湘江;陳略;;時(shí)頻分析在船載天線和船舶動(dòng)力系統(tǒng)故障診斷中的應(yīng)用[J];遙測(cè)遙控;2011年04期
8 李輝;胡姚剛;楊超;李學(xué)偉;唐顯虎;;并網(wǎng)風(fēng)電機(jī)組運(yùn)行狀態(tài)的物元評(píng)估方法[J];電力系統(tǒng)自動(dòng)化;2011年06期
9 馬成龍;段斌;龍辛;;基于服務(wù)導(dǎo)向網(wǎng)絡(luò)架構(gòu)的風(fēng)電場(chǎng)故障診斷支撐系統(tǒng)平臺(tái)[J];電力系統(tǒng)自動(dòng)化;2011年04期
10 汪海波;田煒;魯斌;劉劍;;兆瓦級(jí)風(fēng)電機(jī)組電動(dòng)變槳距系統(tǒng)測(cè)試平臺(tái)設(shè)計(jì)[J];電力系統(tǒng)自動(dòng)化;2010年24期
相關(guān)博士學(xué)位論文 前2條
1 趙高強(qiáng);大規(guī)模風(fēng)電項(xiàng)目開(kāi)發(fā)及并網(wǎng)運(yùn)營(yíng)優(yōu)化管理研究[D];華北電力大學(xué);2013年
2 劉小峰;振動(dòng)信號(hào)非平穩(wěn)特征的深層提取技術(shù)及遠(yuǎn)程診斷服務(wù)系統(tǒng)的研究[D];重慶大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 蘭建武;基于LabVIEW的風(fēng)機(jī)在線監(jiān)測(cè)與故障診斷系統(tǒng)的研究[D];武漢科技大學(xué);2012年
2 高q,
本文編號(hào):2157625
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2157625.html