基于DSP的多相并聯(lián)同步整流電路研究
發(fā)布時間:2018-07-29 18:55
【摘要】:同步整流技術(shù)多應(yīng)用于低壓輸出的開關(guān)電源之中,其基本原理是利用MOSFET的通態(tài)電阻極低這一特性來降低電路損耗。隨著新型電子產(chǎn)品對供電要求的不斷提高,同步整流電路越來越廣泛地應(yīng)用于低壓大電流輸出環(huán)境中。但是單相的同步整流電路輸出能力有限且隨著輸出電流增大,轉(zhuǎn)換效率會降低。本課題即針對以上問題研究了多相同步整流電路并聯(lián)運行的解決方案。在該方案中,其關(guān)鍵技術(shù)是實現(xiàn)多相并聯(lián)同步整流電路的均流輸出。 本文在分析同步整流電路拓撲結(jié)構(gòu)和現(xiàn)有均流技術(shù)的前提下,選取雙管正激為基本拓撲結(jié)構(gòu),并對原有結(jié)構(gòu)做了改進;在控制方法方面,采用最大電流自動均流法作為均流控制的主要控制策略;本文介紹了并聯(lián)模塊電路的主要參數(shù)的設(shè)計方法,包括輸入、輸出濾波電容的計算與選擇,變壓器的參數(shù)設(shè)計,驅(qū)動電路的設(shè)計等;利用DSP實現(xiàn)系統(tǒng)的數(shù)字PID控制。本文設(shè)計了一種全新的控制方式,使得電路可以根據(jù)負載變化自動切換工作模式,保證電路在不同負載條件下都能達到最優(yōu)的轉(zhuǎn)換效率,從而提高了多相并聯(lián)電源的功率密度以及可靠性。 利用Matlab自帶的Simulink平臺搭建了三相并聯(lián)同步整流電路仿真模型,分別對單相的同步整流電路和三相并聯(lián)電路進行了仿真,通過改變電路的負載測得電路在不同負載條件下的轉(zhuǎn)換效率。仿真結(jié)果證明,多相并聯(lián)同步整流電路可以解決單相電路負載能力有限的問題,仿真結(jié)果同時說明,利用多相并聯(lián)技術(shù),電路的等效工作頻率得到了提高,輸出電壓的紋波值得到了降低。
[Abstract]:Synchronous rectifier technology is widely used in switching power supply with low voltage output. Its basic principle is to reduce circuit loss by using the characteristic of very low on-state resistance of MOSFET. With the increasing demand of new electronic products, synchronous rectifier circuits are more and more widely used in low-voltage and high-current output environment. But the output capacity of single phase synchronous rectifier circuit is limited and the conversion efficiency decreases with the increase of output current. In view of the above problems, the solution of parallel operation of multiphase synchronous rectifier circuit is studied in this paper. In this scheme, the key technology is to realize the current-sharing output of multiphase parallel synchronous rectifier circuit. On the premise of analyzing the topology of synchronous rectifier circuit and the current sharing technology, this paper selects the double transistor forward as the basic topology, and improves the original structure. This paper introduces the design methods of the main parameters of the parallel circuit, including the calculation and selection of the input, output filter capacitance, the design of the transformer parameters, and the design of the main parameters of the parallel module circuit, including the calculation and selection of the output filter capacitance, the calculation and selection of the output filter capacitance, and the design of the transformer. The design of drive circuit and DSP are used to realize the digital PID control of the system. In this paper, a new control method is designed, which can automatically switch the operation mode according to the load change, and ensure that the circuit can achieve the optimal conversion efficiency under different load conditions. Thus, the power density and reliability of the multiphase parallel power supply are improved. The simulation model of the three-phase parallel synchronous rectifier circuit is built by using the Simulink platform of Matlab, and the single-phase synchronous rectifier circuit and the three-phase parallel circuit are simulated, respectively. The conversion efficiency of the circuit under different load conditions is measured by changing the load of the circuit. The simulation results show that the multi-phase parallel synchronous rectifier circuit can solve the problem that the load capacity of single-phase circuit is limited. The simulation results also show that the equivalent working frequency of the circuit is improved by using the multi-phase parallel technology. The ripple of the output voltage is worth reducing.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM461
本文編號:2153674
[Abstract]:Synchronous rectifier technology is widely used in switching power supply with low voltage output. Its basic principle is to reduce circuit loss by using the characteristic of very low on-state resistance of MOSFET. With the increasing demand of new electronic products, synchronous rectifier circuits are more and more widely used in low-voltage and high-current output environment. But the output capacity of single phase synchronous rectifier circuit is limited and the conversion efficiency decreases with the increase of output current. In view of the above problems, the solution of parallel operation of multiphase synchronous rectifier circuit is studied in this paper. In this scheme, the key technology is to realize the current-sharing output of multiphase parallel synchronous rectifier circuit. On the premise of analyzing the topology of synchronous rectifier circuit and the current sharing technology, this paper selects the double transistor forward as the basic topology, and improves the original structure. This paper introduces the design methods of the main parameters of the parallel circuit, including the calculation and selection of the input, output filter capacitance, the design of the transformer parameters, and the design of the main parameters of the parallel module circuit, including the calculation and selection of the output filter capacitance, the calculation and selection of the output filter capacitance, and the design of the transformer. The design of drive circuit and DSP are used to realize the digital PID control of the system. In this paper, a new control method is designed, which can automatically switch the operation mode according to the load change, and ensure that the circuit can achieve the optimal conversion efficiency under different load conditions. Thus, the power density and reliability of the multiphase parallel power supply are improved. The simulation model of the three-phase parallel synchronous rectifier circuit is built by using the Simulink platform of Matlab, and the single-phase synchronous rectifier circuit and the three-phase parallel circuit are simulated, respectively. The conversion efficiency of the circuit under different load conditions is measured by changing the load of the circuit. The simulation results show that the multi-phase parallel synchronous rectifier circuit can solve the problem that the load capacity of single-phase circuit is limited. The simulation results also show that the equivalent working frequency of the circuit is improved by using the multi-phase parallel technology. The ripple of the output voltage is worth reducing.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM461
【參考文獻】
相關(guān)期刊論文 前10條
1 施三保;;開關(guān)電源的分布式并聯(lián)均流技術(shù)概述[J];船電技術(shù);2006年02期
2 胡宗波,張波;新型柵極電荷保持驅(qū)動同步整流器的研究[J];電工技術(shù)學(xué)報;2003年02期
3 胡宗波,張波;同步整流器兩種驅(qū)動方式的分析和比較[J];電力電子技術(shù);2001年06期
4 黃海宏;王海欣;張毅;;同步整流的基本原理[J];電氣電子教學(xué)學(xué)報;2007年01期
5 韋聰穎;張波;;開關(guān)電源并聯(lián)運行及其均流技術(shù)[J];電源世界;2004年01期
6 李飛亮;張琳潔;;基于DSP的大功率數(shù)字開關(guān)電源設(shè)計[J];電子技術(shù);2011年12期
7 王悅;陳志彬;;電源并聯(lián)技術(shù)綜述[J];電子技術(shù)應(yīng)用;2006年08期
8 張為堂;周澤華;李翠花;譚敏;;開關(guān)電源模塊并聯(lián)供電系統(tǒng)[J];電源技術(shù);2012年10期
9 黃珍貴;呂亞平;李正曉;吳又美;周玉雙;;基于DSP和PID控制的數(shù)控電源研究[J];科技創(chuàng)新與應(yīng)用;2013年17期
10 楊玉幫;;高頻開關(guān)電源電磁兼容研究[J];電子質(zhì)量;2013年05期
,本文編號:2153674
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2153674.html
最近更新
教材專著