集群風(fēng)電基地的電網(wǎng)安全穩(wěn)定特性與連鎖故障防御策略研究
[Abstract]:On the basis of discussing the current situation of power network cascading fault research, this paper analyzes the model and control mechanism of doubly-fed asynchronous wind turbine (DFIG), and studies the voltage based on the large power network analysis software FASTEST, which is developed by the National Institute of electricity and Power Technology, and takes Jiuquan wind power base as the object. Frequency of safety and stability factors, summed up the base of the main cascading fault mode. Based on the control idea of stratification and partition and the safety and stability control system of power network, the functions of each layer of cascading fault defense system of wind power base are designed. The defense strategy of blocking cascading faults is put forward and the effectiveness of the strategy is verified by examples. 1) the mathematical model, active and reactive power decoupling control technology, low voltage traversing mechanism and wind farm modeling of DFIG are studied. In power flow calculation, when the wind farm adopts constant power factor control, the node is treated as PQ node, and when the constant voltage control is used, The node is treated as PV node (Q is finite value). 2) the effects of reactive power characteristics (including crowbar protection) and reactive power compensation equipment on voltage stability of wind farm are studied. The conclusions are as follows: (1) the high active power output of wind farm will result in the low voltage of parallel network (excluding the reactive power compensator); (2). During the fault period, the reactive power will be absorbed from the power network after the flux attenuation, and the drop degree of the voltage will be aggravated. It may cause low voltage traversing failure of adjacent wind farm groups or cascading action of unit crowbar protection. (3) shunt capacitor can improve the voltage level of wind power base when the power grid is in normal operation. However, the reactive power surplus may occur immediately after the fault clearing, which leads to the high voltage overrun of the key bus. 3) the influence of the ratio of active power output of wind power and the fixed value of frequency protection of wind turbine on the frequency stability of wind power base network is analyzed. The conclusions are as follows: (1) the greater the proportion of active power to the total output power, the worse the frequency stability of wind power base, and the faster the frequency deterioration during the failure; (2) the improper frequency protection of wind turbine units may aggravate the power imbalance during the fault period of power grid. The main evolution modes of cascading faults in cluster wind power base are summarized as follows: (1) the voltage problem of wind power base leads to the low-voltage and high-voltage decoupling of wind turbine units; (2) the power imbalance caused by the outputting channel fault of the wind power base leads to the cascading fault of frequency protection for the unit; (3) after the fault, the wind power supply channel overloads due to the power flow transfer, which results in the cascading fault on the power grid side. Thus causing voltage or frequency problems in wind power base, leading to cascading tripping of fan. 5) based on the control idea of stratification and partition and the system of safety and stability of power network, the functions of cascading fault defense system of wind power base are designed. This paper studies the timing and available measures of cascading fault control in wind power base, and puts forward a defense strategy combining on-line, off-line integration and preventive control, emergency control and correction control, and adjusts the control solution voltage considering the studied stability influence factors. Frequency, overload and other problems caused by wind power base cascading failures. The simulation results show that the strategy is effective.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM711
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁小明;;長(zhǎng)線路弱電網(wǎng)情況下大型風(fēng)電場(chǎng)的聯(lián)網(wǎng)技術(shù)(英文)[J];電工技術(shù)學(xué)報(bào);2007年07期
2 孟仲偉,魯宗相,宋靖雁;中美電網(wǎng)的小世界拓?fù)淠P捅容^分析[J];電力系統(tǒng)自動(dòng)化;2004年15期
3 薛禹勝;;時(shí)空協(xié)調(diào)的大停電防御框架 (一)從孤立防線到綜合防御[J];電力系統(tǒng)自動(dòng)化;2006年01期
4 薛禹勝;;時(shí)空協(xié)調(diào)的大停電防御框架 (二)廣域信息、在線量化分析和自適應(yīng)優(yōu)化控制[J];電力系統(tǒng)自動(dòng)化;2006年02期
5 王曉波;嚴(yán)干貴;鄭太一;范國(guó)英;王建勛;郭雷;董存;崔運(yùn)海;周志強(qiáng);;雙饋感應(yīng)風(fēng)電機(jī)組聯(lián)網(wǎng)運(yùn)行仿真及實(shí)證分析[J];電力系統(tǒng)自動(dòng)化;2008年07期
6 肖創(chuàng)英;汪寧渤;陟晶;丁坤;;甘肅酒泉風(fēng)電出力特性分析[J];電力系統(tǒng)自動(dòng)化;2010年17期
7 陳惠粉;喬穎;魯宗相;閔勇;;風(fēng)電場(chǎng)群的無(wú)功電壓協(xié)調(diào)控制策略[J];電力系統(tǒng)自動(dòng)化;2010年18期
8 朱曉東;石磊;陳寧;朱凌志;劉皓明;劉雋;;考慮Crowbar阻值和退出時(shí)間的雙饋風(fēng)電機(jī)組低電壓穿越[J];電力系統(tǒng)自動(dòng)化;2010年18期
9 李丹;賈琳;許曉菲;王蓓;王寧;謝旭;;風(fēng)電機(jī)組脫網(wǎng)原因及對(duì)策分析[J];電力系統(tǒng)自動(dòng)化;2011年22期
10 薛峰;?;汪寧渤;;大規(guī)模間歇式能源發(fā)電并網(wǎng)集群協(xié)調(diào)控制框架[J];電力系統(tǒng)自動(dòng)化;2011年22期
相關(guān)博士學(xué)位論文 前5條
1 撖奧洋;變速恒頻風(fēng)力發(fā)電系統(tǒng)故障特性與保護(hù)技術(shù)研究[D];華中科技大學(xué);2010年
2 王英英;基于事故鏈的電力系統(tǒng)連鎖故障風(fēng)險(xiǎn)評(píng)估與預(yù)防控制研究[D];華中科技大學(xué);2010年
3 崔楊;大規(guī)模風(fēng)電場(chǎng)群聯(lián)網(wǎng)的源網(wǎng)協(xié)調(diào)性研究[D];華北電力大學(xué);2011年
4 王達(dá);緊急控制與校正控制的協(xié)調(diào)優(yōu)化[D];山東大學(xué);2009年
5 程孟增;雙饋風(fēng)力發(fā)電系統(tǒng)低電壓穿越關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2012年
,本文編號(hào):2140049
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2140049.html