低頻無線電能傳輸系統(tǒng)性能優(yōu)化及實驗研究
本文選題:無線電能傳輸 + 低頻 ; 參考:《哈爾濱工業(yè)大學》2014年碩士論文
【摘要】:本課題設計了一個低頻無線電能傳輸系統(tǒng),系統(tǒng)的輸出功率達到3KW,最大系統(tǒng)傳輸效率超過80%,無線傳輸距離為8cm-10cm,工作頻率低于10kHz,,本文對無線電能傳輸系統(tǒng)的基本理論進行了推導和分析,使用互感耦合模型計算得到了相應公式,針對課題提高傳輸距離的要求對使用利茲線情況下的有效距離做計算,得到了此時相應的公式,并分析各項參數(shù)對有效傳輸距離的影響。通過理論計算可以更好的理解無線電能傳輸系統(tǒng)設計的關鍵并有效地指導實際系統(tǒng)的搭建。 根據(jù)系統(tǒng)需要對低頻無線電能傳輸系統(tǒng)進行電路系統(tǒng)的設計,使用了數(shù)字控制芯片來調(diào)節(jié)系統(tǒng)頻率,逆變電路采用全橋逆變電路,有利于提高系統(tǒng)效率,由于系統(tǒng)工作頻率低且輸出功率較大,選用IGBT作為全橋逆變電路的開關器件,為其配置適當?shù)尿?qū)動模塊以及外圍緩沖電路等。除了弱電部分的設計還對帶功率的無線傳輸部分的每一部分做了分析,通過對電容以及線型材料等的比較最終確定了電容型號和纏繞電感的導線材料。使用仿真軟件對線圈匝數(shù)進行仿真根據(jù)耦合系數(shù)變化趨勢選取合適的匝數(shù),并做了電路仿真得到原邊和副邊電感值對系統(tǒng)功率和效率的影響,進而獲得最佳的原邊和副邊電感值,極大地改善了系統(tǒng)性能。負載的確定也由仿真得到,在確保不發(fā)生頻率分叉的情況下通過仿真曲線結(jié)果來決定負載大小。 為了比較不同固有頻率的系統(tǒng)的特性,本文對PSSP結(jié)構(gòu)和PSSS結(jié)構(gòu)下的擁有不同固有頻率的系統(tǒng)進行了仿真,得到了各個系統(tǒng)的功率效率三維圖形,對每一系統(tǒng)進行分析以及整體比較下各個系統(tǒng)可以得到系統(tǒng)隨著固有頻率的變化而變化的趨勢,根據(jù)此結(jié)論,進一步對耦合系數(shù)和負載進行仿真,得到耦合系數(shù)和負載大小對無線電能傳輸系統(tǒng)的影響。鑒于實際實驗操作的不方便性,本文還對系統(tǒng)的初始起振情況進行仿真,得到電流的起振波形,確保系統(tǒng)的安全性。 在本文最后給出了實際系統(tǒng)的各項參數(shù)值,并對系統(tǒng)進行了各項特性實驗,包括不同距離下的升壓實驗、掃頻實驗、變負載實驗以及進一步的移位傳輸實驗,得到系統(tǒng)的基本特性,此外,更改系統(tǒng)的固有頻率并進行實驗,獲得了相應實驗曲線及分析結(jié)果。
[Abstract]:In this paper, a low frequency radio energy transmission system is designed. The output power of the system is 3kW, the maximum system transmission efficiency is more than 80, the wireless transmission distance is 8cm-10cm, the working frequency is less than 10kHz. The basic theory of radio energy transmission system is deduced and analyzed in this paper. The corresponding formula is obtained by using the mutual inductance coupling model. The effective distance under the Leeds line is calculated according to the requirement of increasing the transmission distance, and the corresponding formula is obtained. The effect of the parameters on the effective transmission distance is analyzed. Through theoretical calculation, we can better understand the key of the design of radio energy transmission system and effectively guide the construction of the actual system. According to the need of the system, the low frequency radio energy transmission system is designed. The digital control chip is used to adjust the frequency of the system, and the full-bridge inverter circuit is used to improve the efficiency of the system. Because of the low operating frequency and high output power IGBT is selected as the switch device of the full-bridge inverter circuit with proper driving module and peripheral buffer circuit. Besides the design of weak current part, every part of wireless transmission part with power is analyzed. Through the comparison of capacitance and linear material, the capacitance type and conductor material of winding inductance are determined. The coil turns are simulated by using the simulation software according to the changing trend of coupling coefficient, and the circuit simulation is done to get the effect of the inductance of the primary and secondary edges on the power and efficiency of the system. The optimal inductance of primary and secondary edges is obtained, and the system performance is greatly improved. The load is determined by simulation, and the load size is determined by the result of simulation curve without frequency bifurcation. In order to compare the characteristics of the system with different natural frequencies, this paper simulates the system with different inherent frequencies under PSSP structure and PSSS structure, and obtains the three dimensional figure of power efficiency of each system. According to the analysis of each system and the comparison of each system as a whole, the change trend of the system with the change of natural frequency can be obtained. According to this conclusion, the coupling coefficient and load are further simulated. The influence of coupling coefficient and load on radio energy transmission system is obtained. In view of the inconvenient operation of the actual experiment, the paper also simulates the initial vibration of the system, and obtains the starting waveform of the current to ensure the security of the system. At the end of this paper, the parameters of the actual system are given, and the characteristic experiments of the system are carried out, including the booster experiment at different distance, the frequency sweep experiment, the variable load experiment and the further shift transmission experiment. The basic characteristics of the system are obtained. In addition, the corresponding experimental curves and analysis results are obtained by changing the natural frequency of the system and conducting experiments.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM724
【參考文獻】
相關期刊論文 前10條
1 金千男,杜國同;功率VDMOSFET與IGBT的最新結(jié)構(gòu)與性能特點[J];吉林大學學報(信息科學版);2004年06期
2 武瑛,嚴陸光,黃常綱,徐善綱;新型無接觸電能傳輸系統(tǒng)的性能分析[J];電工電能新技術(shù);2003年04期
3 張建華;黃學良;鄒玉煒;柏楊;;利用超聲波方式實現(xiàn)無線電能傳輸?shù)目尚行缘难芯縖J];電工電能新技術(shù);2011年02期
4 楊岳峰,張奕黃;IGBT的瞬態(tài)保護和緩沖電路[J];電機電器技術(shù);2003年03期
5 孫躍;戴欣;唐春森;王智慧;蘇玉剛;;分布式無線電能傳輸網(wǎng)[J];電力電子;2010年03期
6 李明勇;陳敏;翟建勇;錢照明;;高頻電感線圈損耗的分析和計算[J];電力電子技術(shù);2007年09期
7 徐華中;周玉棟;;一種基于DDS的寄生電感測量儀設計[J];電子測量技術(shù);2011年04期
8 湯偉;楊瑞霞;郭志濤;顧軍華;;一種高Q值的諧振式無線能量傳輸技術(shù)的應用[J];電工電能新技術(shù);2012年04期
9 李陽;楊慶新;陳海燕;閆卓;張獻;薛明;;無線電能傳輸系統(tǒng)中影響傳輸功率和效率的因素分析[J];電工電能新技術(shù);2012年03期
10 李陽;楊慶新;閆卓;張超;陳海燕;張獻;;無線電能有效傳輸距離及其影響因素分析[J];電工技術(shù)學報;2013年01期
相關博士學位論文 前2條
1 張旭;感應耦合式電能傳輸系統(tǒng)的理論與技術(shù)研究[D];中國礦業(yè)大學(北京);2011年
2 周詩杰;無線電能傳輸系統(tǒng)能量建模及其應用[D];重慶大學;2012年
本文編號:2115554
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2115554.html