直流輸電線路電暈放電的微觀物理過程及離子流場分析
本文選題:電暈放電 + 混合數(shù)值模型。 參考:《重慶大學(xué)》2014年博士論文
【摘要】:特高壓直流輸電線路由于運(yùn)行電壓極性固定,電暈放電導(dǎo)致的空間電荷使得離子流場問題尤為嚴(yán)峻。開展電暈放電微觀物理過程研究對于探求電暈放電的演化規(guī)律、指導(dǎo)輸電線路離子流場計(jì)算具有重要理論價(jià)值。電暈放電微觀過程中會產(chǎn)生大量激發(fā)態(tài)粒子、帶電粒子、自由基等微觀粒子,動理學(xué)規(guī)律極其復(fù)雜。由于缺乏有效的等離子體診斷手段,電暈放電的很多關(guān)鍵微觀參數(shù)無法通過試驗(yàn)獲得,國內(nèi)外開展了大量電暈微觀機(jī)理的數(shù)值研究,至今未取得突破性進(jìn)展?啥糠治鲭姇灧烹娢⒂^物理過程的模型尚缺,對其影響因素的微觀分析也未能深入。 本文在流體動力學(xué)電暈放電模型的基礎(chǔ)上,提出研究電暈放電微觀物理過程的混合數(shù)值模型。采用棒-板電極最簡模型對電暈放電脈沖電流進(jìn)行了計(jì)算分析,研究電暈放電微觀特征量在單次放電脈沖持續(xù)過程中的時空發(fā)展規(guī)律。建立了直流輸電線路電暈放電宏觀離子流場計(jì)算模型,討論了輸電線路結(jié)構(gòu)對離子流場的影響,著重分析相對空氣密度對離子流場的影響規(guī)律。本文的主要內(nèi)容為: ①首次提出了可量化研究電暈放電微觀物理過程的混合數(shù)值模型。模型中利用流體動力學(xué)控制方程描述電暈放電的宏觀物理規(guī)律;采用等離子體化學(xué)反應(yīng)過程電暈放電微觀過程中粒子的產(chǎn)生和消散過程;Boltzmann方程求解模塊給流體動力學(xué)模型提供詳細(xì)的電子輸運(yùn)參數(shù)和能量傳遞系數(shù),同時給等離子體化學(xué)模型提供化學(xué)反應(yīng)速率;通過試驗(yàn)得到的正負(fù)電暈放電單次脈沖波形和UI特性曲線證明了該模型的有效性。 ②計(jì)算分析了正負(fù)電暈的脈沖形成機(jī)制,在此基礎(chǔ)上研究得到了負(fù)電暈放電的電子特性(平均電子能量、電子密度、電子的生成/消散速率等)和負(fù)電暈放電的重粒子特性(凈空間電荷、等離子體化學(xué)反應(yīng)速率、重粒子的成分及密度)在單次脈沖持續(xù)過程中的時空發(fā)展規(guī)律。 ③采用上流有限元法建立了直流輸電線路電暈放電的宏觀離子流場計(jì)算模型,利用單/雙極試驗(yàn)導(dǎo)線的地面合成場強(qiáng)和離子流密度證明了模型的有效性,,討論了輸電線路結(jié)構(gòu)對離子流場的影響,著重分析了相對空氣密度對離子流場的影響。對±800kV和±1100kV直流輸電線路離子流場的計(jì)算結(jié)果表明,在跨越高海拔、高溫度區(qū)域時,需要對輸電線結(jié)構(gòu)進(jìn)行校驗(yàn),確保其合成場強(qiáng)滿足國家標(biāo)準(zhǔn)。
[Abstract]:Due to the fixed polarity of the operating voltage, the space charge caused by corona discharge makes the ion flow field more serious. The research on the microscopic physical process of corona discharge is of great theoretical value in exploring the evolution law of corona discharge and guiding the calculation of ion flow field in transmission lines. In the microscopic process of corona discharge, a large number of excited particles, charged particles, free radicals and other micro-particles will be produced, and the kinetic laws are extremely complex. Due to the lack of effective plasma diagnostic methods, many key microscopic parameters of corona discharge can not be obtained through experiments. A large number of numerical studies on the microscopic mechanism of corona have been carried out at home and abroad, but no breakthrough has been made so far. There is still no model for quantitative analysis of corona discharge microphysical process, and the microcosmic analysis of its influencing factors is not thorough. Based on the hydrodynamic corona discharge model, a hybrid numerical model is proposed to study the microscopic physical process of corona discharge. The corona discharge pulse current was calculated and analyzed by using the simplest model of rod-plate electrode, and the temporal and spatial development of the microscopic characteristic quantity of corona discharge in the continuous process of single discharge pulse was studied. The calculation model of macroscopic ion flow field in corona discharge of DC transmission line is established. The influence of transmission line structure on ion flow field is discussed, and the influence law of relative air density on ion flow field is analyzed. The main contents of this paper are as follows: 1 for the first time, a mixed numerical model for quantifiable study of microscopic physical processes of corona discharge is proposed. In the model, the macroscopic physical law of corona discharge is described by hydrodynamic governing equation, and the generation and dissipation of particles in corona discharge microcosmic process by plasma chemical reaction are described. The Boltzmann equation solution module provides detailed electron transport parameters and energy transfer coefficients for the hydrodynamic model and chemical reaction rate for the plasma chemical model. The validity of the model is proved by the single pulse waveform and UI characteristic curve of positive and negative corona discharge. 2 the pulse formation mechanism of positive and negative corona is calculated and analyzed. On this basis, the electron characteristics of negative corona discharge (average electron energy, electron density, electron generation / dissipation rate, etc.) and the heavy particle characteristics of negative corona discharge (net space charge, plasma chemical reaction rate, etc.) are obtained. The temporal and spatial development of heavy particles in the process of single pulse duration. (3) the calculation model of macroscopic ion flow field of DC transmission line corona discharge is established by means of upflow finite element method. The effectiveness of the model is proved by the ground synthetic field strength and ion current density of a single / bipolar test wire. The influence of transmission line structure on ion flow field is discussed, and the influence of relative air density on ion flow field is analyzed. The calculation results of ion flow field in 鹵800kV and 鹵1100kV HVDC transmission lines show that when crossing the high altitude and high temperature regions, it is necessary to check the transmission line structure to ensure that the composite field strength meets the national standard.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM721.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張海峰;龐其昌;陳秀春;;高壓電暈放電特征及其檢測[J];電測與儀表;2006年02期
2 中國電工技術(shù)學(xué)會特高壓輸變電技術(shù)考察團(tuán);;俄羅斯、烏克蘭超、特高壓輸變電技術(shù)發(fā)展近況[J];電力設(shè)備;2003年02期
3 劉有為,李繼紅,李斌;空氣密度和濕度對導(dǎo)線電暈特性的影響[J];電網(wǎng)技術(shù);1990年04期
4 中村秋夫,岡本浩,曹祥麟;東京電力公司的特高壓輸電技術(shù)應(yīng)用現(xiàn)狀[J];電網(wǎng)技術(shù);2005年06期
5 中村秋夫,岡本浩,曹祥麟;東京電力公司采用特高壓輸電技術(shù)的論證經(jīng)過[J];電網(wǎng)技術(shù);2005年10期
6 舒印彪;1000kV交流特高壓輸電技術(shù)的研究與應(yīng)用[J];電網(wǎng)技術(shù);2005年19期
7 黃道春;阮江軍;文武;李昊星;趙全江;鄭偉;;特高壓交流輸電線路電磁環(huán)境研究[J];電網(wǎng)技術(shù);2007年01期
8 肖冬萍;何為;謝鵬舉;康鵬;劉華麟;張占龍;;高壓輸電線路電暈放電特性及其電磁輻射場計(jì)算[J];電網(wǎng)技術(shù);2007年21期
9 王毅;孫成秋;湯濤;郎需軍;羅棟梁;;不同運(yùn)行方式下特高壓直流輸電線路的地面電場與離子流分布[J];電網(wǎng)技術(shù);2008年02期
10 胡琴;舒立春;蔣興良;孫才新;袁前飛;楊占剛;;大氣參數(shù)對導(dǎo)線交流起暈電壓的影響及校正[J];電網(wǎng)技術(shù);2010年11期
相關(guān)博士學(xué)位論文 前4條
1 羅兆楠;直流輸電線路鄰近建筑物時合成電場計(jì)算方法及其應(yīng)用研究[D];華北電力大學(xué)(北京);2011年
2 金曉林;電子回旋共振放電的PIC/MCC模擬[D];電子科技大學(xué);2007年
3 甄永贊;高壓直流輸電線路離子流場的高效數(shù)值方法及其應(yīng)用的研究[D];華北電力大學(xué);2012年
4 彭慶軍;空氣中流注放電等離子體化學(xué)模型研究及其影響因素分析[D];重慶大學(xué);2012年
本文編號:2101070
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2101070.html