電池化成設備的大規(guī)模柔性化控制技術研究
發(fā)布時間:2018-07-03 21:47
本文選題:電池化成工藝設備 + 化成工藝策略; 參考:《華中科技大學》2014年博士論文
【摘要】:隨著日益繁多的新型電子產品的上市和各國電動汽車開發(fā)力度的加大,各類電池的需求量越來越大,現(xiàn)有的單機電池化成工藝和設備己不能滿足電池生產需求。電池化成工藝設備的工藝策略,影響著電池的容量和使用壽命,而電池化成設備的規(guī)模,則直接影響著電池的生產效率和生產成本。本文在傳統(tǒng)的單機化成工藝設備的基礎上,提出了大規(guī)模柔性化電池化成工藝設備的思想,并對設備開發(fā)過程中的控制技術進行了研究。研究內容包括:節(jié)能和精確的電池化成工藝策略、大規(guī);晒に嚱K端節(jié)點同步方法和基于電池化成設備故障的柔性化設計方法等方面。 電池化成工藝的能量流拓撲結構、信息流拓撲結構和軟件平臺是電池化成工藝設備的研究基礎。本文首先對電池化成工藝設備能量模型進行了研究,選用了既節(jié)能又不會造成上級電網(wǎng)污染的直流母線型能量流拓撲結構,作為研究的平臺。其次,選用高速、方便、且符合控制系統(tǒng)發(fā)展方向的工業(yè)以太網(wǎng)控制技術,作為大規(guī)模分布式化成工藝設備的總線結構,并利用層次化的信息流拓撲結構實現(xiàn)了規(guī);に嚱K端節(jié)點的接入。最后,利用多任務操作系統(tǒng),在嵌入式平臺上實現(xiàn)了傳統(tǒng)化成工藝設備的網(wǎng)絡化控制,達到設備柔性化的目的。 在直流母線型能量流拓撲結構分析的基礎上,構建了電流環(huán)和電壓環(huán)的化成工藝策略,解決了電池化成工藝過程中高精度的能量注入問題。本文在實驗研究的基礎上,構建了化成蓄電池的數(shù)學模型,推導了電流和電壓的傳遞函數(shù),研究了電池化成工藝策略,保證了化成工藝過程中電壓電流的穩(wěn)態(tài)響應和平滑切換。同時,在大規(guī)模電池化成工藝方案中,分析了基于電池產量的單次化成和連續(xù)化成工藝的節(jié)拍控制策略,并提出了基于工人勞動強度的連續(xù)化成節(jié)拍控制方法,實現(xiàn)了電池化成工藝過程中電能回饋和利用,避免了電能浪費。 大規(guī)模電池化成工藝設備擁有成百上千個工藝終端節(jié)點,針對大規(guī)模終端節(jié)點的電池化成工藝數(shù)據(jù)傳輸?shù)膯栴},本文在交換式工業(yè)以太網(wǎng)數(shù)據(jù)延遲時間分析的基礎上,計算了電池化成工藝終端節(jié)點數(shù)與采樣時間的關系,提出了基于滑動時窗的終端節(jié)點同步時鐘偏差預測補償算法。該算法較傳統(tǒng)時鐘同步算法具有更高的同步精度,并且通過實驗進行了算法的同步精度驗證,為大規(guī)模電池化成工藝終端節(jié)點的時鐘同步提供了理論依據(jù)。 為了使電池化成工藝設備更加智能化、柔性化和自動化,本文提出了電池化成工藝設備的柔性設計方案,使電池化成工藝設備終端節(jié)點具有故障檢測能力、大規(guī)模網(wǎng)絡拓撲結構重構能力、設備擴展能力和全自動化控制能力。在終端節(jié)點的故障檢測方法上,提出了變周期心跳幀的檢測方法,并通過檢測性能參數(shù)對該算法在大規(guī)模終端節(jié)點上的檢測性能進行了評判。針對大規(guī)模終端節(jié)點故障發(fā)生時刻和修復后接入的網(wǎng)絡拓撲結構重構的問題,提出了基于目標函數(shù)優(yōu)化的網(wǎng)絡拓撲結構重構方法,保證單次和連續(xù)化成工藝節(jié)拍控制策略條件下,大規(guī)模電池化成終端節(jié)點的最優(yōu)電網(wǎng)取電性能。在異構終端設備接入方法上,提出了協(xié)議轉換方法,實現(xiàn)了新型工業(yè)以太網(wǎng)電池化成工藝設備與企業(yè)原有的非以太網(wǎng)絡工藝設備的兼容和共存,避免企業(yè)對化成工藝設備的重復投資而造成的資源浪費。在自動化控制方法上,研究了一種直接數(shù)字合成的多電機同步算法,適應設備的未來發(fā)展方向。 基于上述的研究成果,成功研制了基于工業(yè)以太網(wǎng)絡的大規(guī)模柔性化鉛酸電池化成工藝設備,并在駱駝集團股份有限公司得到具體應用,實現(xiàn)了鉛酸電池化成工藝過程的網(wǎng)絡化控制和管理,實際測試效果良好。該設備亦可通過調節(jié)控制參數(shù)和修改工藝描述文件,直接應用到鋰離子電池、鎳氫電池等多種類型電池的生產過程中。該設備的成功應用對網(wǎng)絡化蓄電池化成工藝裝備在我國的推廣應用具有重要意義。
[Abstract]:With the increasing number of new electronic products and the increasing development of electric vehicles , the demand of various kinds of batteries is getting more and more , and the existing single - machine battery formation process and equipment can not meet the battery production demand . The technology strategy of the battery formation process equipment affects the capacity and the service life of the battery . The research on the control technology in the process of equipment development is discussed . The research contents include : energy saving and accurate battery formation process strategy , large - scale formation process terminal node synchronization method and flexible design method based on battery formation equipment failure .
The energy flow topological structure , information flow topological structure and software platform of the battery formation process are the research foundation of the battery formation process equipment . Firstly , the energy model of the battery formation process equipment is studied .
On the basis of analyzing the topological structure of DC bus - type energy flow , the formation process strategy of the current loop and voltage loop is constructed , and the problem of high precision energy injection in the process of battery formation is solved .
Large - scale battery formation process equipment has hundreds of process terminal nodes , aiming at the problem of data transmission of battery formation process of large - scale terminal nodes . Based on the exchange - type industrial Ethernet data delay time analysis , the paper calculates the relationship between node number and sampling time of battery formation process terminal , and proposes a terminal node synchronous clock deviation prediction compensation algorithm based on sliding time window . The algorithm has higher synchronization accuracy than traditional clock synchronization algorithm , and the synchronization accuracy verification of the algorithm is carried out by experiments , which provides theoretical basis for the clock synchronization of large - scale battery formation process terminal node .
In order to make the battery formation process equipment more intelligent , flexible and automatic , this paper puts forward a flexible design scheme of the battery formation process equipment , which makes the terminal node of the battery formation process equipment have fault detection capability , large - scale network topology reconfiguration capability , equipment expansion capability and full automation control ability .
Based on the above research results , a large - scale flexible lead - acid battery formation process equipment based on the industrial Ethernet network has been successfully developed , and the network control and management of lead - acid battery formation process is realized . The equipment can be directly applied to the production process of various types of batteries such as lithium ion batteries and nickel - hydrogen batteries by adjusting control parameters and modifying process description files . The successful application of the equipment has important significance for popularization and application of networked storage battery formation process equipment .
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM910.5
【參考文獻】
相關期刊論文 前10條
1 周龍瑞;周明明;陳體銜;王煥祥;孫延先;;電動車電池內化成工藝研究[J];蓄電池;2006年04期
2 劉松斌;費躍;段志偉;;新型移相全橋零電壓開關PWM變換器[J];電工技術學報;2011年S1期
3 林川;吳景東;;LPC2292的μC/OS-Ⅱ硬件抽象層構建[J];單片機與嵌入式系統(tǒng)應用;2008年03期
4 王立松,張晶;大容量鋰動力電池化成電源全數(shù)字控制技術[J];電源技術;2005年02期
5 王術;郗曉田;游林儒;;鋰動力電池化成能量回饋控制系統(tǒng)的研究[J];電源技術;2011年04期
6 魯桂梅;謝秋;石永伉;任衛(wèi)斌;;鋰離子電池化成工藝研究[J];化學工程與裝備;2011年09期
7 羅卓;;鋰離子二次電池充電方法的研究進展[J];廣東化工;2011年09期
8 陸原;趙永健;李曉光;;帶有以太網(wǎng)接口的蓄電池化成監(jiān)控系統(tǒng)的設計[J];國外電子元器件;2008年07期
9 劉振東;王延生;穆慧靈;肖鐵妹;;Modbus-Profibus網(wǎng)關在高壓變頻器遠程監(jiān)控系統(tǒng)中的應用[J];電氣傳動;2013年03期
10 周峰;劉迎澍;安笑蕊;;嵌入式IEEE 1588精確時鐘同步實現(xiàn)[J];電氣技術;2013年04期
,本文編號:2095111
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2095111.html