反激型光伏并網(wǎng)微逆變器及其控制策略的研究
本文選題:微型逆變器 + 交錯并聯(lián); 參考:《南京航空航天大學(xué)》2014年碩士論文
【摘要】:進(jìn)入21世紀(jì)以來,能源短缺危機(jī)以及環(huán)境污染問題使得新能源的開發(fā)利用受到越來越多的關(guān)注。其中太陽能分布廣泛、儲量無限,利用過程中清潔無污染。作為分布式發(fā)電的重要組成部分,,傳統(tǒng)光伏并網(wǎng)發(fā)電架構(gòu)存在因局部陰影造成太陽能利用率低、光伏組件不匹配產(chǎn)生熱斑、整體效率低等問題。因此用于與每塊光伏組件集成配備的光伏并網(wǎng)微型逆變器得到研究。每個微逆變器的功率在500W以內(nèi),獨(dú)立控制可保證每塊組件都能在最大功率點(diǎn)運(yùn)行,提高局部陰影遮蓋下發(fā)電系統(tǒng)的太陽能利用率。 本文研究了一種交錯并聯(lián)有源箝位反激型微逆變器,前級有源箝位反激變換器采用非互補(bǔ)驅(qū)動方式,吸收、轉(zhuǎn)移漏感能量,有效抑制了主開關(guān)管關(guān)斷時(shí)的電壓尖峰,增加了效率優(yōu)化的可能性。兩路交錯并聯(lián)結(jié)構(gòu),可減小主開關(guān)管應(yīng)力及輸入輸出電流諧波。本文首先闡述了非互補(bǔ)驅(qū)動有源箝位反激變換器的工作原理,分析了微逆變器的主要損耗組成,并據(jù)此給出了關(guān)鍵參數(shù)的設(shè)計(jì)參考。其次,針對光伏并網(wǎng)應(yīng)用場合及本課題的拓?fù)浣Y(jié)構(gòu)特點(diǎn),設(shè)計(jì)了由并網(wǎng)電流控制、最大功率跟蹤控制及均流控制三大部分組成的控制策略。對微型逆變器進(jìn)行了小信號建模,對并網(wǎng)電流控制進(jìn)行了閉環(huán)設(shè)計(jì),滿足動態(tài)性能、穩(wěn)定性及進(jìn)網(wǎng)電流質(zhì)量的要求。設(shè)計(jì)了帶有電壓環(huán)的最大功率跟蹤方法,可快速、準(zhǔn)確跟蹤最大功率點(diǎn)并有效解決直流母線電壓崩潰問題。設(shè)計(jì)了均流控制,保證兩路均衡功率,提高了微逆變器的可靠性及壽命。 最后,本文對整個光伏并網(wǎng)微逆變器系統(tǒng)進(jìn)行了詳細(xì)的設(shè)計(jì),并搭建了基于TMS320F2812控制的實(shí)驗(yàn)平臺,在此平臺上實(shí)現(xiàn)了各項(xiàng)基本功能。實(shí)驗(yàn)結(jié)果驗(yàn)證了電路原理、控制策略及系統(tǒng)設(shè)計(jì)的可行性。
[Abstract]:Since the beginning of the 21st century, energy shortage crisis and environmental pollution have caused more and more attention to the development and utilization of new energy. The solar energy is widely distributed, unlimited reserves, clean and no pollution in the process of utilization. As an important part of distributed generation, the traditional photovoltaic grid-connected generation architecture has some problems, such as low utilization of solar energy due to local shadow, thermal spot caused by photovoltaic module mismatch, low overall efficiency and so on. Therefore, the photovoltaic grid-connected miniature inverter integrated with each photovoltaic module has been studied. The power of each micro-inverter is less than 500W, and the independent control can ensure that each module can operate at the maximum power point and improve the solar energy efficiency of the power generation system under the local shadow. In this paper, an interleaved shunt active clamped flyback micro-inverter is studied. The former active clamped flyback converter uses non-complementary drive mode to absorb and transfer the leakage inductance energy, which effectively restrains the voltage spike when the main switch tube is turned off. Increases the possibility of efficiency optimization. The two-channel staggered parallel structure can reduce the stress of the main switch tube and the harmonics of the input and output current. In this paper, the principle of the non-complementary drive active clamp flyback converter is described, the main loss components of the micro-inverter are analyzed, and the design reference of the key parameters is given. Secondly, according to the characteristics of photovoltaic grid-connected applications and the topology of the subject, a control strategy composed of grid-connected current control, maximum power tracking control and current sharing control is designed. The miniature inverter is modeled with small signal and the closed-loop design of grid-connected current control is carried out to meet the requirements of dynamic performance stability and current quality. The maximum power tracking method with voltage loop is designed, which can quickly and accurately track the maximum power points and effectively solve the DC bus voltage collapse problem. The current-sharing control is designed to ensure the two-channel equalization power and improve the reliability and life of the micro-inverter. Finally, the whole system of photovoltaic grid-connected micro-inverter is designed in detail, and the experimental platform based on TMS320F2812 is built, on which the basic functions are realized. The experimental results verify the feasibility of circuit principle, control strategy and system design.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM464
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前7條
1 楊永恒;周克亮;;光伏電池建模及MPPT控制策略[J];電工技術(shù)學(xué)報(bào);2011年S1期
2 樊永隆;;反激式變換器中RCD箝位電路的設(shè)計(jì)[J];電源技術(shù)應(yīng)用;2006年12期
3 張鳳閣;朱仕祿;殷孝雎;滕志飛;;交錯反激式光伏并網(wǎng)微逆變器的控制器實(shí)現(xiàn)[J];電工技術(shù)學(xué)報(bào);2013年05期
4 劉樹,劉建政,趙爭鳴,王健,吳理博,袁立強(qiáng);基于改進(jìn)MPPT算法的單級式光伏并網(wǎng)系統(tǒng)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年07期
5 劉邦銀;段善旭;康勇;;局部陰影條件下光伏模組特性的建模與分析[J];太陽能學(xué)報(bào);2008年02期
6 吳理博;趙爭鳴;劉建政;王健;劉樹;;單級式光伏并網(wǎng)逆變系統(tǒng)中的最大功率點(diǎn)跟蹤算法穩(wěn)定性研究[J];中國電機(jī)工程學(xué)報(bào);2006年06期
7 肖景良;徐政;林崇;何少強(qiáng);;局部陰影條件下光伏陣列的優(yōu)化設(shè)計(jì)[J];中國電機(jī)工程學(xué)報(bào);2009年11期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前3條
1 肖華鋒;光伏發(fā)電高效利用的關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2010年
2 譚光慧;太陽能交流模塊逆變器及其控制技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2009年
3 朱艷偉;光伏發(fā)電系統(tǒng)效率提高理論方法及關(guān)鍵技術(shù)研究[D];華北電力大學(xué);2012年
本文編號:2086968
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2086968.html