天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

梯次利用鋰離子電池容量和內(nèi)阻變化特性研究

發(fā)布時(shí)間:2018-06-30 16:51

  本文選題:梯次利用電池 + 容量衰退機(jī)理; 參考:《北京交通大學(xué)》2014年碩士論文


【摘要】:摘要:車用淘汰鋰離子電池的梯次利用,是降低動(dòng)力電池全壽命周期成本,提升電池的利用價(jià)值的有效手段。車用淘汰電池的再循環(huán)壽命是制約電池梯次利用的關(guān)鍵問題之一。本文從梯次利用電池再循環(huán)過程中的衰退機(jī)理角度出發(fā),主要致力于研究梯次利用電池容量和內(nèi)阻的再循環(huán)特性及其之間的相互關(guān)系,具體研究?jī)?nèi)容及結(jié)論如下: (1)深入分析了不同充放電倍率應(yīng)力和SOC循環(huán)區(qū)間應(yīng)力下電池歐姆內(nèi)阻和極化內(nèi)阻的再循環(huán)特性,并利用多重線性回歸的方法建立了不同SOC循環(huán)區(qū)間應(yīng)力下電池的歐姆內(nèi)阻、極化內(nèi)阻增長(zhǎng)率和全區(qū)間電池歐姆內(nèi)阻、極化內(nèi)阻增長(zhǎng)率之間的函數(shù)模型,與實(shí)際全區(qū)間循環(huán)的對(duì)應(yīng)數(shù)據(jù)對(duì)比驗(yàn)證了該模型的有效性,減少了電池壽命預(yù)測(cè)的時(shí)間成本。 (2)量化分析了電池再循環(huán)過程中的熱力學(xué)損失和動(dòng)力學(xué)損失,結(jié)果顯示梯次利用電池再循環(huán)使用時(shí),鋰離子和活性材料的損失是電池容量損失的主要部分,并且歷史使用路徑的差異性對(duì)電池再循環(huán)使用過程中容量的衰退方式會(huì)產(chǎn)生深遠(yuǎn)影響,舊電池很可能會(huì)出現(xiàn)一些異常于新電池的現(xiàn)象。利用容量增量(ICA)分析方法,對(duì)比分析了梯次利用電池在倍率、SOC循環(huán)區(qū)間與循環(huán)老化相互耦合作用下的電池容量衰退機(jī)理及材料退化規(guī)律。建立了基于退化軌跡的梯次利用電池壽命預(yù)測(cè)模型,該模型確定了梯次利用電池壽命與SOC循環(huán)區(qū)間應(yīng)力的數(shù)學(xué)關(guān)系,這對(duì)于儲(chǔ)能工況下梯次利用電池循環(huán)壽命的預(yù)測(cè)具有重要意義。 (3)利用典型相關(guān)分析方法,確立了該批次電池再循環(huán)使用過程中容量衰退率和歐姆內(nèi)阻增長(zhǎng)率與極化內(nèi)阻增長(zhǎng)率之間的關(guān)系模型,模型具有較高的精度和普適性,8只電池的實(shí)驗(yàn)數(shù)據(jù)一致顯示電池的容量衰退率和內(nèi)阻增長(zhǎng)率之間均符合一定的平面關(guān)系。 (4)建立了電化學(xué)阻抗譜模型,對(duì)比分析了新舊電池的電化學(xué)特性參數(shù),發(fā)現(xiàn)電池老化過程中歐姆內(nèi)阻,電化學(xué)極化阻抗,電雙層電容及鋰離子的擴(kuò)散系數(shù)與電池健康狀態(tài)聯(lián)系密切。對(duì)比分析了新舊電池的外特性參數(shù)如SOC-OCV曲線、ICA曲線、倍率充放電效率,結(jié)果表明SOC-OCV曲線在電池的全壽命周期內(nèi)并未隨電池健康狀態(tài)的變化發(fā)生整體升高和降低的趨勢(shì),在實(shí)際應(yīng)用中,應(yīng)加強(qiáng)對(duì)一些惡劣工況下(高低溫,大倍率)電池管理系統(tǒng)中SOC-OCV的參數(shù)進(jìn)行定期修正;在電池的衰退過程中,電極材料的損失及動(dòng)力學(xué)特性的變化使得ICA曲線上部分峰的位置,尖銳程度均發(fā)生顯著改變;當(dāng)容量衰退率在一定范圍內(nèi),電池具有良好的倍率特性和充放電效率,但是當(dāng)容量衰退至50%時(shí),倍率特性和充放電效率顯著降低,因此車用淘汰鋰離子動(dòng)力電池梯次利用時(shí),適合投入到一些小倍率充放電的儲(chǔ)能工況中。
[Abstract]:Absrtact: it is an effective way to reduce the whole life cycle cost of power battery and to improve the utilization value of battery by eliminating the use of lithium-ion battery. One of the key problems that restrict the utilization of battery ladder is the recirculation life of vehicle battery. In this paper, from the point of view of the degradation mechanism in the process of battery recirculation, this paper is mainly devoted to the study of the recirculation characteristics and the relationship between the capacity and internal resistance of the trapezoidal battery. The specific research contents and conclusions are as follows: (1) the recirculation characteristics of the ohmic and polarized internal resistance of the battery under different charge / discharge rate stress and SOC cycle region stress are analyzed. The multiple linear regression method is used to establish the functional models between the ohmic internal resistance, the polarization internal resistance growth rate, the whole cell ohmic resistance and the polarization internal resistance growth rate under different SOC cyclic region stress. Compared with the corresponding data of the whole cycle, the validity of the model is verified, and the time cost of battery life prediction is reduced. (2) the thermodynamic and kinetic losses during battery recirculation are quantitatively analyzed. The results show that the loss of lithium-ion and active material is the main part of the battery capacity loss. And the difference of the historical usage path will have a profound influence on the decline of the battery capacity in the process of recycling, and the old battery may appear some phenomena that are abnormal to the new battery. By means of capacity increment (ICA) analysis, the degradation mechanism of battery capacity and the law of material degradation are compared and analyzed under the coupling of the ratio SOC cycle interval and the cyclic aging of the trapezoidal battery. In this paper, a prediction model of the life of echelon utilization battery based on degenerate trajectory is established. The mathematical relationship between the life of ladder utilizing battery and the cyclic stress of SOC is determined by the model. It is of great significance to predict the cycle life of the battery under the condition of energy storage. (3) using the canonical correlation analysis method, The relationship between the capacity decline rate, the growth rate of ohmic internal resistance and the growth rate of polarization resistance is established. The experimental data of 8 batteries with high accuracy and universality show that the relationship between the cell capacity decline rate and the growth rate of internal resistance is consistent. (4) the electrochemical impedance spectrum model is established. The electrochemical characteristic parameters of the new and old batteries were compared and analyzed. It was found that the ohmic internal resistance, electrochemical polarization impedance, electric double layer capacitance and diffusion coefficient of lithium ion were closely related to the healthy state of the battery during the aging process. The external characteristic parameters of new and old batteries, such as SOC-OCV curve and ICA curve, are compared and analyzed. The results show that the SOC-OCV curve does not increase or decrease with the change of battery health during the whole life cycle of the battery. In practical application, the parameters of SOC-OCV in the battery management system under some bad working conditions (high and low temperature, large multiplier) should be revised regularly. The loss of electrode material and the change of kinetic characteristics make the position and sharpness of some peaks on ICA curve change significantly, when the capacity decline rate is in a certain range, the battery has good rate characteristics and charge-discharge efficiency. However, when the capacity declines to 50, the rate characteristics and charge / discharge efficiency decrease significantly. Therefore, it is suitable for some small rate charging and discharging energy storage conditions when the lithium ion power battery is eliminated in the trapezoidal use.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM912

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 王力臻,項(xiàng)民,谷書華,王海軍;開路電壓及其影響因素[J];電池;1999年04期

2 張彩萍;姜久春;張維戈;劉秋降;魯妍;;梯次利用鋰離子電池電化學(xué)阻抗模型及特性參數(shù)分析[J];電力系統(tǒng)自動(dòng)化;2013年01期

3 徐克成;秋天;陳軍;桂長(zhǎng)清;;動(dòng)力型蓄電池歐姆內(nèi)阻測(cè)定[J];電池工業(yè);2011年01期

4 莊全超;徐守冬;邱祥云;崔永麗;方亮;孫世剛;;鋰離子電池的電化學(xué)阻抗譜分析[J];化學(xué)進(jìn)展;2010年06期

5 莊全超;魏國(guó)禎;許金梅;樊小勇;董全峰;孫世剛;;溫度對(duì)LiCoO_2中鋰離子嵌脫過程的影響[J];化學(xué)學(xué)報(bào);2008年07期

6 何洪文;余曉江;;電動(dòng)車輛動(dòng)力電池的性能評(píng)價(jià)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2006年05期

7 王紅強(qiáng);;基于SPSS多元回歸分析的原材料對(duì)混凝土裂縫的影響分析[J];云南水力發(fā)電;2010年04期

8 谷書華;張文靜;王力臻;張林森;;鋰離子電池石墨負(fù)極嵌脫鋰機(jī)理研究[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年01期

,

本文編號(hào):2086151

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2086151.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶191c7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com