感應(yīng)電機(jī)高速運(yùn)行控制的關(guān)鍵技術(shù)研究
本文選題:電壓和電流限制 + 最大轉(zhuǎn)矩弱磁控制; 參考:《上海大學(xué)》2014年碩士論文
【摘要】:隨著交流傳動(dòng)系統(tǒng)的發(fā)展和廣泛應(yīng)用,對(duì)系統(tǒng)調(diào)速范圍、穩(wěn)態(tài)精度、動(dòng)態(tài)響應(yīng)有著越來(lái)越高的要求,具有弱磁升速性能的調(diào)速系統(tǒng)普遍應(yīng)用于電力機(jī)車(chē)、電動(dòng)汽車(chē)和數(shù)控機(jī)床主軸驅(qū)動(dòng)等領(lǐng)域。作為交流電機(jī)高性能控制的典型代表,基于磁鏈定向的矢量控制由于實(shí)現(xiàn)了定子電流勵(lì)磁分量和轉(zhuǎn)矩分量的解耦,在磁鏈的控制上有著獨(dú)特的優(yōu)勢(shì)和便利,成為研究電機(jī)高速運(yùn)行的主要方案之一。本文針對(duì)感應(yīng)電機(jī)高速控制下的關(guān)鍵技術(shù)做了系統(tǒng)的分析,在矢量控制的基礎(chǔ)上對(duì)系統(tǒng)的弱磁控制、逆變器PWM調(diào)制技術(shù)和電流調(diào)節(jié)器設(shè)計(jì)這幾個(gè)方面做了深入研究,主要內(nèi)容如下: 以弱磁控制為基礎(chǔ)的感應(yīng)電機(jī)高速運(yùn)行必然會(huì)導(dǎo)致輸出轉(zhuǎn)矩的衰減以及系統(tǒng)動(dòng)態(tài)性能的降低。本文深入分析了感應(yīng)電機(jī)在電壓和電流限制條下全速度范圍內(nèi)的最大轉(zhuǎn)矩工作點(diǎn)軌跡,進(jìn)而給出對(duì)應(yīng)的最大轉(zhuǎn)矩弱磁控制。該弱磁方法原理清晰,設(shè)計(jì)簡(jiǎn)單,通過(guò)電機(jī)參考電壓的反饋,能夠在全范圍內(nèi)實(shí)現(xiàn)對(duì)勵(lì)磁電流的優(yōu)化調(diào)節(jié),且不受電機(jī)參數(shù)影響。仿真結(jié)果表明該弱磁控制運(yùn)行穩(wěn)定,具有很好的動(dòng)態(tài)調(diào)節(jié)效果,能保證電機(jī)在全速度范圍內(nèi)以最大轉(zhuǎn)矩運(yùn)行。 以電壓源型PWM逆變器作為驅(qū)動(dòng)裝置的傳動(dòng)系統(tǒng)具有快速的動(dòng)態(tài)響應(yīng),逆變器采用空間矢量PWM的控制方式雖然輸出電流諧波含量小,但仍無(wú)法完全利用母線電壓。本文基于基波相電壓等效的原理,著重分析了逆變器在過(guò)調(diào)制區(qū)域輸出電壓矢量的軌跡,通過(guò)對(duì)軌跡的控制能夠使逆變器過(guò)渡到六階梯波模式運(yùn)行,輸出電壓達(dá)到最大。將過(guò)調(diào)制技術(shù)和弱磁控制相結(jié)合,可以增大電壓限制邊界,進(jìn)一步提高電機(jī)高速運(yùn)行時(shí)的輸出轉(zhuǎn)矩。 此外,當(dāng)矢量控制系統(tǒng)運(yùn)行在高速時(shí),電機(jī)dq軸電壓耦合的加劇以及數(shù)字系統(tǒng)的控制延遲會(huì)導(dǎo)致電流調(diào)節(jié)器性能的惡化,影響系統(tǒng)運(yùn)行的穩(wěn)定性。本文建立了感應(yīng)電機(jī)離散域數(shù)學(xué)模型,對(duì)不同電流調(diào)節(jié)器的性能做了分析和對(duì)比,并基于離散域內(nèi)零極點(diǎn)對(duì)消的方法,提出了一種新的電流調(diào)節(jié)器設(shè)計(jì),能夠在全速范圍內(nèi)實(shí)現(xiàn)dq軸電壓的解耦并對(duì)系統(tǒng)控制延遲進(jìn)行補(bǔ)償,提高了對(duì)高頻信號(hào)的調(diào)節(jié)能力。仿真和實(shí)驗(yàn)結(jié)果表明這種電流調(diào)節(jié)器具有寬速范圍內(nèi)的穩(wěn)定性,能夠改善系統(tǒng)的控制精度和穩(wěn)態(tài)性能。 最后,本文建立了能量互饋型雙感應(yīng)電機(jī)對(duì)拖系統(tǒng)的仿真模型,系統(tǒng)采用基于全階磁鏈觀測(cè)器的直接磁鏈定向控制,通過(guò)對(duì)聯(lián)軸器的建模,實(shí)現(xiàn)了電機(jī)之間的力矩傳遞,很好地模擬了實(shí)際中的剛性聯(lián)接,仿真結(jié)果與實(shí)驗(yàn)相對(duì)比,體現(xiàn)出良好參照性。
[Abstract]:With the development and wide application of AC drive system, the speed regulation range, steady-state precision and dynamic response of the system have higher and higher requirements. The speed regulating system with weak magnetic field raising speed performance is widely used in electric locomotives. Electric vehicles and CNC machine tool spindle drive and other areas. As a typical example of high performance control of AC motor, vector control based on flux direction has unique advantages and convenience in flux control because of decoupling stator current excitation component and torque component. It has become one of the main schemes to study the motor running at high speed. In this paper, the key technology of high speed control of induction motor is systematically analyzed. Based on vector control, the weak magnetic field control of the system, PWM modulation technology of inverter and the design of current regulator are deeply studied. The main contents are as follows: the high speed operation of induction motor based on weak magnetic field control will inevitably lead to the attenuation of the output torque and the degradation of the dynamic performance of the system. In this paper, the maximum torque working point locus of induction motor in the full speed range of voltage and current limiting bar is analyzed, and the corresponding maximum torque weak magnetic control is given. The principle of the method is clear and the design is simple. Through the feedback of the reference voltage of the motor, the excitation current can be optimized and adjusted in the whole range without the influence of the motor parameters. The simulation results show that the weak magnetic field control is stable and has a good dynamic regulation effect. It can guarantee the motor running with the maximum torque in the range of full speed. The drive system with the voltage source PWM inverter as the driving device has fast dynamic response. Although the output current harmonic content of the inverter is small, the bus voltage can not be fully utilized in the control mode of the inverter using space vector PWM. Based on the principle of equivalent fundamental phase voltage, this paper focuses on the analysis of the output voltage vector trajectory of the inverter in the over-modulated region. By controlling the trajectory, the inverter can be transferred to the six-step wave mode and the output voltage reaches the maximum. By combining overmodulation with weak magnetic field control, the voltage limiting boundary can be increased, and the output torque of motor at high speed can be further improved. In addition, when the vector control system is running at high speed, the acceleration of the voltage coupling of the motor's dq axis and the control delay of the digital system will lead to the deterioration of the performance of the current regulator, which will affect the stability of the system. In this paper, the discrete domain mathematical model of induction motor is established, and the performance of different current regulators is analyzed and compared. Based on the method of zero pole cancellation in discrete domain, a new design of current regulator is proposed. It can decouple the dq-axis voltage and compensate the system control delay in the full speed range, which improves the adjusting ability of the high-frequency signal. The simulation and experimental results show that the current regulator is stable in a wide speed range and can improve the control accuracy and steady-state performance of the system. Finally, the simulation model of the dual induction motor pair towing system with mutual energy feedback is established. The direct flux linkage directional control based on the full order flux observer is adopted in the system. By modeling the coupling, the torque transfer between the motors is realized. The rigid connection in practice is well simulated, and the simulation results are compared with the experiment, showing good reference.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM346
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳芳;萬(wàn)山明;黃聲華;;一種過(guò)調(diào)制算法及其在永磁同步電動(dòng)機(jī)弱磁控制中的應(yīng)用[J];電工技術(shù)學(xué)報(bào);2010年01期
2 韋克康;周明磊;鄭瓊林;王琛琛;;基于復(fù)矢量的異步電機(jī)電流環(huán)數(shù)字控制[J];電工技術(shù)學(xué)報(bào);2011年06期
3 李葉松;雷力;;基于轉(zhuǎn)子磁場(chǎng)定向的異步電動(dòng)機(jī)弱磁方法研究[J];電力電子技術(shù);2007年05期
4 楊立永;田安民;;交流電機(jī)離散時(shí)間電流調(diào)節(jié)器的設(shè)計(jì)[J];電力電子技術(shù);2011年05期
5 楊競(jìng)衡;電動(dòng)汽車(chē)的電氣傳動(dòng)系統(tǒng)[J];電氣傳動(dòng);1999年04期
6 刁利軍;劉志剛;沈茂盛;雷軍;;交流傳動(dòng)試驗(yàn)系統(tǒng)方案綜述[J];電氣傳動(dòng);2007年09期
7 劉軍鋒;李葉松;;感應(yīng)電機(jī)在弱磁區(qū)的電流解耦控制研究[J];電氣傳動(dòng);2008年08期
8 呂敬;張建文;王晗;蔡旭;;SVPWM過(guò)調(diào)制算法的理論分析與實(shí)驗(yàn)應(yīng)用[J];電氣傳動(dòng);2011年08期
9 趙云;李葉松;;基于磁場(chǎng)定向控制的全范圍電壓輸出SVPWM策略[J];電氣傳動(dòng);2010年10期
10 周明磊;游小杰;王琛琛;;電力機(jī)車(chē)牽引電機(jī)在方波下的控制策略[J];電工技術(shù)學(xué)報(bào);2013年11期
相關(guān)博士學(xué)位論文 前1條
1 趙云;交流電機(jī)高速化驅(qū)動(dòng)關(guān)鍵控制技術(shù)研究[D];華中科技大學(xué);2012年
,本文編號(hào):2083650
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2083650.html