光伏逆變并網(wǎng)控制系統(tǒng)研究與實(shí)現(xiàn)
發(fā)布時(shí)間:2018-06-28 21:56
本文選題:并網(wǎng)控制 + SVPWM ; 參考:《電子科技大學(xué)》2014年碩士論文
【摘要】:近年來,隨著世界能源危機(jī)的加劇,環(huán)境日益惡化,新能源的發(fā)展和利用受到各國(guó)政府的高度關(guān)注,新能源技術(shù)的研究備受各國(guó)專家關(guān)注。光伏逆變器作為利用新能源的一種重要分布式發(fā)電形式,微電網(wǎng)的重要組成部分,其并網(wǎng)控制系統(tǒng)研究受到廣泛關(guān)注。本文以三相光伏逆變的并網(wǎng)控制系統(tǒng)作為設(shè)計(jì)對(duì)象,以提高并網(wǎng)控制系統(tǒng)的穩(wěn)定性,動(dòng)態(tài)性能,穩(wěn)態(tài)性能,提高輸出并網(wǎng)輸出電流質(zhì)量等為目的,對(duì)并網(wǎng)控制系統(tǒng)進(jìn)行研究和分析。首先,本文分析了光伏逆變器的并網(wǎng)原理,在并網(wǎng)原理的基礎(chǔ)上,引入了SVPWM(空間矢量脈寬調(diào)制)開關(guān)控制技術(shù);詳細(xì)闡述了SVPWM開關(guān)控制技術(shù)的理論基礎(chǔ),并基于三相交流電流在三相電機(jī)中的合成磁動(dòng)勢(shì)等效原理,嚴(yán)密推導(dǎo)了三相交流電流以及三相交流電壓從三相靜止坐標(biāo)系轉(zhuǎn)換兩相旋轉(zhuǎn)坐標(biāo)系的坐標(biāo)變轉(zhuǎn)化過程;研究了正弦參考電壓由基本矢量合成方法,設(shè)計(jì)了扇區(qū)判斷的索引值確定方法;簡(jiǎn)述了SVPWM波的DSP實(shí)現(xiàn),實(shí)現(xiàn)了將對(duì)三相交流電流的控制轉(zhuǎn)換為對(duì)直流電流的控制。其次,本文基于并網(wǎng)模型,在SVPWM開關(guān)控制方法的基礎(chǔ)上,對(duì)系統(tǒng)進(jìn)行建模分析。針對(duì)由坐標(biāo)變換引起的有功電流和無(wú)功電流耦合的現(xiàn)象,本文引入了系統(tǒng)前饋解耦設(shè)計(jì)方法,消除了耦合,減小了系統(tǒng)控制難度;對(duì)電網(wǎng)電壓擾動(dòng)進(jìn)了前饋補(bǔ)償設(shè)計(jì),消除了其對(duì)系統(tǒng)穩(wěn)態(tài)誤差的影響;引入PI前向串聯(lián)設(shè)計(jì),分析了PI參數(shù)對(duì)系統(tǒng)調(diào)節(jié)的原理。然后,本文對(duì)并網(wǎng)控制系統(tǒng)的穩(wěn)態(tài)性,動(dòng)態(tài)性能和穩(wěn)定性能進(jìn)行了分析,對(duì)比了PI參數(shù)變化、系統(tǒng)硬件參數(shù)變化對(duì)系統(tǒng)性能的影響;由于僅采用PI控制器設(shè)計(jì)的控制系統(tǒng)在理論上無(wú)法完全消除系統(tǒng)穩(wěn)態(tài)誤差,引入了重復(fù)控制器;在分析重復(fù)控制器的基礎(chǔ)上,根據(jù)系統(tǒng)需要,改進(jìn)了重復(fù)控制器結(jié)構(gòu);設(shè)計(jì)了重復(fù)控制和PI控制相結(jié)合的控制系統(tǒng)。最后,本文構(gòu)建了控制系統(tǒng)的MATLAB仿真模型,驗(yàn)證了該系統(tǒng)各模塊功能的正確性;同時(shí)在硬件平臺(tái)上對(duì)本文設(shè)計(jì)的控制系統(tǒng)進(jìn)行了對(duì)比實(shí)驗(yàn)測(cè)試。測(cè)試結(jié)果顯示系統(tǒng)在滿功率1500W工作時(shí),功率因素為0.99,輸出電能的諧波因數(shù)為1.8%。測(cè)試結(jié)果表明本設(shè)計(jì)對(duì)并網(wǎng)電流的控制效果良好,精度高。
[Abstract]:In recent years, with the aggravation of the world energy crisis and the worsening of the environment, the development and utilization of new energy are highly concerned by the governments of all countries, and the research of new energy technology has attracted the attention of experts. As an important form of distributed generation using new energy, photovoltaic inverter (PV) is an important part of microgrid, and its grid-connected control system has been paid more and more attention. In this paper, three-phase photovoltaic inverter grid-connected control system is designed to improve the stability, dynamic performance, steady-state performance of the grid-connected control system, and improve the quality of output grid-connected output current, etc. Research and analysis of grid-connected control system. Firstly, this paper analyzes the grid-connected principle of photovoltaic inverter, introduces SVPWM (Space Vector Pulse width Modulation) switch control technology on the basis of grid-connected principle, and expounds the theoretical basis of SVPWM switch control technology in detail. Based on the equivalent principle of three-phase AC current in three-phase motor, the coordinate transformation process of three-phase AC current and three-phase AC voltage from three-phase static coordinate system to two-phase rotating coordinate system is deduced. The method of synthesizing sinusoidal reference voltage by basic vector is studied, the method of determining the index value of sector judgment is designed, and the DSP realization of SVPWM wave is briefly described, which can convert the control of three-phase AC current into the control of DC current. Secondly, based on grid-connected model and SVPWM switch control method, the system is modeled and analyzed. Aiming at the coupling of active current and reactive current caused by coordinate transformation, the feedforward decoupling design method is introduced in this paper, which eliminates the coupling and reduces the difficulty of system control. The influence of Pi parameters on the steady-state error of the system is eliminated, and the principle of Pi parameters regulating the system is analyzed by introducing Pi forward series design. Then, the steady-state, dynamic and stable performance of grid-connected control system is analyzed, and the effects of Pi parameters and hardware parameters on system performance are compared. Since the control system designed only with Pi controller can not completely eliminate the steady-state error of the system theoretically, the repetitive controller is introduced, and the repetitive controller structure is improved according to the need of the system by analyzing the repetitive controller. A control system combining repetitive control and Pi control is designed. Finally, the MATLAB simulation model of the control system is constructed, which verifies the correctness of the function of each module of the control system. At the same time, the control system designed in this paper is tested and compared on the hardware platform. The test results show that the power factor is 0.99 and the harmonic factor is 1.8 when the full power is 1500 W. The test results show that this design has good control effect and high precision for grid-connected current.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM615;TM464
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 屈克慶,陳國(guó)呈,孫承波;基于幅相控制方式的零電壓軟開關(guān)三相PWM變流器[J];電工技術(shù)學(xué)報(bào);2004年05期
2 汪海寧,蘇建徽,張國(guó)榮,茆美琴,丁明;光伏并網(wǎng)發(fā)電及無(wú)功補(bǔ)償?shù)慕y(tǒng)一控制[J];電工技術(shù)學(xué)報(bào);2005年09期
3 王強(qiáng);王天施;孫海軍;劉曉琴;侯利民;;新型高效率并聯(lián)諧振直流環(huán)節(jié)軟開關(guān)逆變器[J];電工技術(shù)學(xué)報(bào);2013年05期
4 羅承先;;太陽(yáng)能發(fā)電的普及與前景[J];中外能源;2010年11期
,本文編號(hào):2079498
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2079498.html
最近更新
教材專著