電力系統(tǒng)頻率動態(tài)分析與自動切負荷控制研究
本文選題:電力系統(tǒng) + 頻率穩(wěn)定 ; 參考:《西南交通大學》2014年博士論文
【摘要】:電力系統(tǒng)頻率反應了系統(tǒng)中有功功率的供需平衡情況,是電力系統(tǒng)運行的重要指標。當超特高壓輸電線路因故障退出運行、系統(tǒng)解列或者大容量機組退出運行時,可能造成系統(tǒng)較大的有功缺額,嚴重時將會導致系統(tǒng)頻率失穩(wěn)。擾動后電力系統(tǒng)頻率動態(tài)特性分析是電力系統(tǒng)頻率穩(wěn)定分析和控制的基礎。目前常用的電力系統(tǒng)頻率穩(wěn)定分析方法有單機等值模型法和時域仿真法。單機等值模型法無法考慮系統(tǒng)網(wǎng)絡、負荷對系統(tǒng)頻率動態(tài)的影響;時域仿真法計算量大,難以實現(xiàn)在線應用。廣域量測系統(tǒng)實時監(jiān)測電網(wǎng)狀態(tài),為電力系統(tǒng)的分析與控制提供了新的手段。利用系統(tǒng)的廣域量測數(shù)據(jù),論文主要從電力系統(tǒng)頻率分析方法、頻率安全穩(wěn)定在線評估、頻率穩(wěn)定自動切負荷控制等方面開展研究,主要研究工作如下:(1)燃煤電廠鍋爐及輔機設備對電力系統(tǒng)頻率動態(tài)影響。傳統(tǒng)的頻率動態(tài)研究方法忽略了鍋爐、輔機對系統(tǒng)頻率動態(tài)的影響。在系統(tǒng)頻率響應模型的基礎上,建立了一個包含電廠鍋爐、輔機及機組控制系統(tǒng)的簡單閉環(huán)模型,用于電力系統(tǒng)頻率動態(tài)研究。該閉環(huán)模型計及了鍋爐效應及由廠用電驅(qū)動的輔機設備的頻率效應。仿真對比研究了不同擾動功率情況下,系統(tǒng)鍋爐、輔機設備對系統(tǒng)頻率動態(tài)的影響。探討了在頻率動態(tài)分析時如何考慮鍋爐、輔機設備的影響。(2)頻率動態(tài)分析方法。提出了一種基于擾動前后系統(tǒng)廣域量測數(shù)據(jù)的電力系統(tǒng)頻率動態(tài)分析方法。該方法首先對擾動后系統(tǒng)的網(wǎng)絡進行化簡,消去系統(tǒng)的聯(lián)絡節(jié)點;然后對系統(tǒng)的網(wǎng)絡方程、負荷方程、發(fā)電機運動方程和原動機-調(diào)速器動態(tài)方程進行線性化,建立擾動后系統(tǒng)的狀態(tài)方程和輸出方程。利用擾動前后系統(tǒng)的廣域量測數(shù)據(jù),對系統(tǒng)的狀態(tài)方程進行求解,計算擾動后系統(tǒng)慣性中心頻率。通過與PSS/E仿真結果進行比較,該方法能夠準確描述擾動后系統(tǒng)頻率的動態(tài)特性。(3)頻率安全穩(wěn)定在線評估方法。提出了一種基于擾動前后系統(tǒng)廣域量測數(shù)據(jù)和Amoldi模型降階方法的擾動后系統(tǒng)頻率最低值的快速預測算法。對擾動后系統(tǒng)狀態(tài)方程及輸出方程進行初等變換;利用Amoldi模型降階方法,對初等變換后的系統(tǒng)狀態(tài)方程與輸出方程進行模型降階。求解降階后系統(tǒng)狀態(tài)方程并確定系統(tǒng)慣性中心頻率的表達式,進而計算擾動后系統(tǒng)頻率的最低值。與PSS/E的仿真結果進行比較,該算法能夠準確、快速計算擾動后系統(tǒng)頻率的最低值。使用擾動后25ms及50ms時的系統(tǒng)廣域量測數(shù)據(jù),該算法仍能準確計算出系統(tǒng)頻率最低值,表明該算法對系統(tǒng)的廣域量測數(shù)據(jù)具有一定的魯棒性。該算法能夠用于電力系統(tǒng)頻率安全穩(wěn)定的在線評估。(4)頻率穩(wěn)定自動切負荷控制算法。提出了一種對擾動后系統(tǒng)頻率最低值進行控制的自動切負荷算法。假設已知系統(tǒng)切負荷總量在切負荷點的分配比例,根據(jù)擾動后系統(tǒng)頻率最低值的預測結果,預先設定一個初始的切負荷量,建立切負荷后系統(tǒng)的狀態(tài)方程及輸出方程,計算切負荷后系統(tǒng)頻率的最低值。比較頻率最低值的預測結果與整定值,采用二分法調(diào)整系統(tǒng)所需要的切負荷量。通過算例分析,該方法能夠快速、準確計算系統(tǒng)所需要的切負荷量。該算法能夠用于自動切負荷控制切負荷量的在線整定。
[Abstract]:The power system frequency reflects the balance of the supply and demand of active power in the system. It is an important indicator of the operation of the power system. When the UHV transmission line is out of operation because of the failure, the system disintegration or the large capacity unit may cause a large active vacancy in the system, which will lead to the instability of the system frequency. The frequency dynamic characteristic analysis of force system is the basis of frequency stability analysis and control in power system. The commonly used method of frequency stability analysis of power system is single computer equivalent model method and time domain simulation method. Single machine equivalent model method can not consider the influence of system network, load on system frequency dynamics; time domain simulation method is difficult to calculate. The wide area measurement system monitors the state of the power network in real time and provides a new means for the analysis and control of the power system. Using the wide area measurement data of the system, the paper mainly studies the frequency analysis method of the power system, the frequency safety and stability online assessment, the frequency stability automatic load cutting control and so on. The following are as follows: (1) the dynamic influence of the boiler and auxiliary equipment on the frequency of the power system. The traditional frequency dynamic research method neglects the influence of the boiler and auxiliary machine on the frequency dynamics of the system. On the basis of the system frequency response model, a simple closed loop model including the power plant boiler, the auxiliary machine and the unit control system is established. The frequency dynamics of the power system is studied. The closed loop model is taken into account of the boiler effect and the frequency effect of the auxiliary equipment driven by the plant. The influence of the system boiler and auxiliary equipment on the frequency dynamics of the system under different disturbance power conditions is studied and compared. The influence of the boiler and auxiliary equipment is discussed in the frequency dynamic analysis. 2) frequency dynamic analysis method. A dynamic analysis method of power system frequency based on the wide area measurement data before and after disturbance is proposed. First, the network of the disturbed system is reduced and the contact node of the system is eliminated; then the network equation, load formula, generator motion equation and original motive governor motion of the system are then carried out. The equation of state is linearized and the state equation and output equation of the system after disturbance are established. Using the wide area measurement data of the system before and after the disturbance, the state equation of the system is solved and the frequency of the inertial center of the system after the disturbance is calculated. By comparing with the simulation results of the PSS/E, this method can accurately describe the dynamic characteristics of the system frequency after the disturbance. (3) an online evaluation method for frequency safety and stability. A fast prediction algorithm based on the system wide area measurement data and the Amoldi model reduction method is proposed. The initial transformation of the system state equation and output equation after disturbance is carried out, and the Amoldi model reduction method is used for the primary transformation. The system state equation and the output equation are reduced. The equation of the system is solved and the expression of the system inertia center frequency is determined. Then the minimum system frequency is calculated after the disturbance. Compared with the simulation results of PSS/E, the algorithm can accurately calculate the lowest frequency of the system after disturbance. The system wide area measurement data at 25ms and 50ms can still accurately calculate the lowest frequency of the system, which shows that the algorithm has a certain robustness for the wide area measurement data of the system. The algorithm can be used for the online evaluation of the frequency safety and stability of the power system. (4) the frequency stabilization automatic load control algorithm. An automatic load cutting algorithm which is controlled by the lowest frequency of the post system. Assuming the proportion of the total load in the system is known at the cutting point, the initial load is set in advance according to the prediction result of the lowest system frequency after the disturbance, and the system state equation and the output equation are established after the load cutting, and the system frequency after the load cutting is calculated. The result of the comparison of the lowest frequency of the frequency and the setting value are compared, and a dichotomy is used to adjust the load required by the system. Through an example analysis, the method can quickly and accurately calculate the load required by the system. This algorithm can be used for the on-line setting of the load of the automatic load cutting control.
【學位授予單位】:西南交通大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM712
【參考文獻】
相關期刊論文 前10條
1 王陽;魯宗相;閔勇;時珊珊;;基于降階模型的多電源微電網(wǎng)小干擾分析[J];電工技術學報;2012年01期
2 徐泰山,薛禹勝;暫態(tài)頻率偏移可接受性的定量分析[J];電力系統(tǒng)自動化;2002年19期
3 余志文,白雪峰,郭志忠,田洪迅;大容量遠距離輸電網(wǎng)暫態(tài)穩(wěn)定控制方法的探討[J];電力系統(tǒng)自動化;2003年04期
4 彭疆南,孫元章,王海風;基于廣域量測數(shù)據(jù)和導納參數(shù)在線辨識的受擾軌跡預測[J];電力系統(tǒng)自動化;2003年22期
5 徐泰山,李碧君,鮑顏紅,薛禹勝,曲祖義,高凱;考慮暫態(tài)安全性的低頻低壓減載量的全局優(yōu)化[J];電力系統(tǒng)自動化;2003年22期
6 劉兆燕;江全元;曹一家;;基于廣域測量系統(tǒng)的快速暫態(tài)穩(wěn)定預測方法[J];電力系統(tǒng)自動化;2007年21期
7 王剛;張雪敏;梅生偉;;基于近似連續(xù)潮流的在線電壓穩(wěn)定分析[J];電力系統(tǒng)自動化;2008年11期
8 林偉芳;湯涌;孫華東;郭強;趙紅光;曾兵;;巴西“2·4”大停電事故及對電網(wǎng)安全穩(wěn)定運行的啟示[J];電力系統(tǒng)自動化;2011年09期
9 王建全,王偉勝,朱振青,夏道止,董金森;電力系統(tǒng)最優(yōu)切負荷算法[J];電力系統(tǒng)自動化;1997年03期
10 王曉茹;阮錚;劉克天;;電力系統(tǒng)擾動后穩(wěn)態(tài)頻率預測直接法改進[J];電力系統(tǒng)及其自動化學報;2010年04期
相關博士學位論文 前1條
1 董雪源;基于互聯(lián)網(wǎng)技術的電力系統(tǒng)廣域保護通信系統(tǒng)研究[D];西南交通大學;2012年
,本文編號:2077771
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2077771.html