雙輪轂電機(jī)電子差速系統(tǒng)結(jié)構(gòu)及控制策略研究
本文選題:電動(dòng)汽車 + 輪轂電機(jī); 參考:《河北聯(lián)合大學(xué)》2014年碩士論文
【摘要】:當(dāng)今社會(huì),能源與環(huán)境問(wèn)題已經(jīng)成為制約經(jīng)濟(jì)和社會(huì)發(fā)展的重要因素。為了降低能源消耗、減小環(huán)境污染,人們開(kāi)發(fā)出了以清潔能源作為動(dòng)力,具有零污染、零排放的純電動(dòng)汽車。目前輪轂電機(jī)驅(qū)動(dòng)式電動(dòng)汽車以其簡(jiǎn)單的機(jī)械傳動(dòng)結(jié)構(gòu),較高的驅(qū)動(dòng)效率,低廉的成本等諸多優(yōu)點(diǎn)已成為日益發(fā)展、研究的熱點(diǎn),,但輪轂電機(jī)驅(qū)動(dòng)式電動(dòng)汽車采用傳統(tǒng)的機(jī)械差速器,難以實(shí)現(xiàn)車輛的順利轉(zhuǎn)向。因此文章設(shè)計(jì)了電子差速器以解決這一問(wèn)題。 文章對(duì)機(jī)械差速器進(jìn)行了動(dòng)力學(xué)分析,并利用其原理對(duì)軟件進(jìn)行了設(shè)計(jì),從而實(shí)現(xiàn)了電子差速的控制方案。本文的電動(dòng)汽車采用前輪驅(qū)動(dòng)方式,將兩輪轂電機(jī)放置在兩個(gè)前輪,作為驅(qū)動(dòng)輪,由兩個(gè)獨(dú)立的控制器分別控制,另外還分析了電機(jī)的結(jié)構(gòu)和原理,并建立了它的數(shù)學(xué)模型,通過(guò)分析電機(jī)特定的參數(shù)關(guān)系,得出控制器應(yīng)控制的參數(shù),建立電子差速控制系統(tǒng),提出適合電動(dòng)汽車的調(diào)速方案。 同時(shí)文章完成了電子防滑控制系統(tǒng)的設(shè)計(jì),包括輪速傳感器的選擇,輪速識(shí)別方法的選擇、機(jī)械鎖止機(jī)構(gòu)的設(shè)計(jì),以及電子單元的控制。 另外,文章還完成了電子差速系統(tǒng)硬件的選擇及硬件電路的設(shè)計(jì)、軟件的設(shè)計(jì),建立了更具體的電子差速控制模型。 最后利用MATLAB/Simulink仿真軟件,對(duì)電子差速系統(tǒng)進(jìn)行了模擬仿真分析。通過(guò)仿真結(jié)果驗(yàn)證,電子差速控制系統(tǒng)設(shè)計(jì)合理,差速效果良好。 電子差速控制器的設(shè)計(jì),解決了用輪轂電機(jī)驅(qū)動(dòng)式電動(dòng)汽車的轉(zhuǎn)向問(wèn)題。同時(shí)相比于傳統(tǒng)的機(jī)械差速器,避免了復(fù)雜的機(jī)械傳動(dòng)結(jié)構(gòu),再者由于不用考慮路面及轉(zhuǎn)向角度的問(wèn)題,對(duì)其控制計(jì)算方法也進(jìn)行了簡(jiǎn)化,提高了控制系統(tǒng)的穩(wěn)定性,使車輛具有更佳的轉(zhuǎn)彎性能和控制響應(yīng)。
[Abstract]:Nowadays, energy and environment problems have become an important factor restricting economic and social development. In order to reduce energy consumption and environmental pollution, a pure electric vehicle with zero pollution and zero emission has been developed. At present, with the advantages of simple mechanical transmission structure, high driving efficiency, low cost and so on, the wheel motor driven electric vehicle has become a hot spot in the research. However, the traditional mechanical differential is used in the hub motor driven electric vehicle, so it is difficult to realize the smooth steering of the vehicle. Therefore, electronic differential is designed to solve this problem. In this paper, the dynamic analysis of mechanical differential is carried out, and the software is designed based on its principle, thus realizing the control scheme of electronic differential speed. In this paper, the electric vehicle adopts the front wheel drive mode, the two hub motors are placed in two front wheels, which are controlled by two independent controllers. In addition, the structure and principle of the motor are analyzed, and its mathematical model is established. By analyzing the specific parameter relationship of the motor, the parameters to be controlled by the controller are obtained, the electronic differential speed control system is established, and the speed regulation scheme suitable for the electric vehicle is put forward. At the same time, the design of electronic anti-skid control system is completed, including the selection of wheel speed sensor, the selection of wheel speed identification method, the design of mechanical locking mechanism, and the control of electronic unit. In addition, the selection of hardware, the design of hardware circuit and the design of software are completed, and a more specific electronic differential control model is established. Finally, the electronic differential system is simulated and analyzed by MATLAB / Simulink software. The simulation results show that the electronic differential control system is reasonably designed and the differential speed effect is good. The design of electronic differential controller solves the steering problem of electric vehicle driven by hub motor. At the same time, compared with the traditional mechanical differential, the complex mechanical transmission structure is avoided. Furthermore, the control calculation method is simplified and the stability of the control system is improved because the road surface and steering angle are not considered. Make the vehicle better turn performance and control response.
【學(xué)位授予單位】:河北聯(lián)合大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U469.72;TM33
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 王玲瓏;黃妙華;;輪轂式電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)發(fā)展綜述[J];北京汽車;2007年01期
2 周勇;李聲晉;田海波;方宗德;周奇勛;;四輪轂電機(jī)電動(dòng)車的電子差速控制方法[J];電機(jī)與控制學(xué)報(bào);2007年05期
3 周元芳;永磁無(wú)刷直流電動(dòng)機(jī)的電樞反應(yīng)[J];廣西電力技術(shù);1995年01期
4 楊靖;;用單片機(jī)控制的直流電機(jī)調(diào)速系統(tǒng)[J];機(jī)床電器;2008年01期
5 程如煙;;各國(guó)政府支持電動(dòng)汽車發(fā)展的最新舉措和動(dòng)向[J];科技進(jìn)步與對(duì)策;2011年15期
6 曹少泳;孟丹;程小華;;基于DSP的無(wú)刷直流電動(dòng)機(jī)雙閉環(huán)控制程序軟件設(shè)計(jì)[J];微電機(jī);2007年06期
7 馬駿;對(duì)稱式錐齒輪差速器差速原理的動(dòng)力分析[J];西安礦業(yè)學(xué)院學(xué)報(bào);1998年03期
8 楊月婷,董韶軍,陳杰翔;脈寬調(diào)制電路在傳感器信號(hào)調(diào)理電路中的應(yīng)用[J];自動(dòng)化儀表;2003年08期
9 張響亮;胡榮強(qiáng);譚偉平;紀(jì)統(tǒng)剛;;CAN總線在電氣監(jiān)控系統(tǒng)中的應(yīng)用[J];湖南工業(yè)大學(xué)學(xué)報(bào);2009年05期
相關(guān)碩士學(xué)位論文 前4條
1 朱華;我國(guó)電動(dòng)汽車產(chǎn)業(yè)發(fā)展模式及湖北省電動(dòng)汽車產(chǎn)業(yè)發(fā)展對(duì)策研究[D];武漢理工大學(xué);2004年
2 高時(shí)芳;四輪獨(dú)立驅(qū)動(dòng)電動(dòng)汽車的電子差速系統(tǒng)研究[D];西北工業(yè)大學(xué);2006年
3 范仲偉;制動(dòng)介入式防滑差速系統(tǒng)控制策略研究[D];武漢理工大學(xué);2008年
4 張希明;純電動(dòng)汽車控制系統(tǒng)[D];浙江大學(xué);2008年
本文編號(hào):2074735
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2074735.html