不對稱PWM調(diào)制在無線電能傳輸系統(tǒng)的應(yīng)用研究
發(fā)布時間:2018-06-24 18:25
本文選題:無線電能傳輸系統(tǒng) + H橋諧振變換器; 參考:《上海交通大學(xué)》2014年碩士論文
【摘要】:無線電能傳輸(Contactless Inductive Power Transfer,CIPT)技術(shù)屬于智能電網(wǎng)的應(yīng)用范疇,該技術(shù)能夠?qū)崿F(xiàn)用電設(shè)備與供電線路之間在無需物理接觸的情況下進行能量傳輸,從而避免了傳統(tǒng)電能傳輸方式引起火花、機械磨損嚴(yán)重等缺點。無線電能傳輸技術(shù)在醫(yī)療領(lǐng)域、水下環(huán)境以及易燃易爆場所等特殊環(huán)境下有著更為廣闊的發(fā)展空間。所以,對于無線電能傳輸技術(shù)的研究具有重要的科學(xué)意義及實用價值。本文研究的主要內(nèi)容有:1.首先對CIPT技術(shù)的主要應(yīng)用領(lǐng)域進行了調(diào)研,介紹了CIPT技術(shù)的研究現(xiàn)狀和其應(yīng)用的前景。同時,對CIPT研究領(lǐng)域的關(guān)鍵技術(shù)和主要研究方向進行了分析,最后探討了CIPT技術(shù)在今后的發(fā)展上可能面臨的問題。2.本文分析了CIPT系統(tǒng)各個組成部分的結(jié)構(gòu),在不改變原有諧振功率變換器拓撲結(jié)構(gòu)的基礎(chǔ)上,提出了H橋諧振變換器廣義調(diào)制控制策略。其后,對基于H橋諧振變換器廣義調(diào)制的CIPT功率流控制方法進行了研究,分析zvs軟開關(guān)的相角裕度,提出了不對稱pwm調(diào)制的研究,建立等效電路模型,實現(xiàn)zvs軟開關(guān)的優(yōu)勢,為分析和優(yōu)化設(shè)計電壓型cipt系統(tǒng)奠定了理論基礎(chǔ)。3.由于電壓型cipt系統(tǒng)原副線圈之間的磁場耦合系數(shù)低、負載吸收的有功功率低,這會導(dǎo)致無線電能傳輸系統(tǒng)的工作效率不高。本文通過分析,對原、副邊串聯(lián)諧振的電壓型cipt系統(tǒng)進行研究,在不改變原有諧振功率變換器結(jié)構(gòu)的基礎(chǔ)上,結(jié)合系統(tǒng)等效電路建立了穩(wěn)態(tài)解析模型,對h橋逆變器應(yīng)用了不對稱pwm控制策略方案,同時推導(dǎo)出了系統(tǒng)耦合功率與控制角α的函數(shù)關(guān)系式,進一步以開關(guān)管zvs的開關(guān)狀態(tài)為約束條件,其優(yōu)點是:增大的逆變器zvs開關(guān)的相角裕值,降低了逆變器的開關(guān)損耗,提高裝置在cipt系統(tǒng)的安全性及可靠性。仿真驗證了理論分析的結(jié)果,為電壓型cipt系統(tǒng)的設(shè)計與分析提供了一定的理論參考。4.通過理論分析和反復(fù)的實驗測試,深入研究和揭示了控制方法對功率變換和對cipt系統(tǒng)工作特性的影響,主要包括:功率變換時引起的平滑控制功率流、抑制系統(tǒng)沖擊、降低功率器件工作應(yīng)力、降低功率變換過程中電磁干擾等。針對這些問題,在不改變原有諧振功率變換器結(jié)構(gòu)的基礎(chǔ)上,對h橋諧振變換器提出新的調(diào)制驅(qū)動控制方案,以此來約束及優(yōu)化功率流,提高裝置在無線傳輸電能時的安全性及可靠性。5.為了驗證不對稱pwm調(diào)制的有效性,運用matlab/simulink對cipt系統(tǒng)進行了仿真并搭建電路進行實驗分析。設(shè)計系統(tǒng)開關(guān)頻率為20khz,直流母線電壓為50V,模擬負載為10Ω時,觀察逆變器電壓電流輸出的情況。根據(jù)實驗平臺的實際運行結(jié)果,可以得到如下的結(jié)論:本文研究的無線電能傳輸系統(tǒng),總體設(shè)計方案可行、理論分析和參數(shù)設(shè)計正確、控制方法有效、系統(tǒng)工作穩(wěn)定可靠。該實驗平臺能夠為今后CIPT技術(shù)的深入研究奠定堅實的理論基礎(chǔ)。
[Abstract]:Contactless Power transfer (CIPT) technology is one of the applications of the smart grid, which enables the transmission of energy between power devices and power lines without physical contact. Thus avoiding the traditional power transmission mode caused by spark, mechanical wear and other shortcomings. Radio energy transmission technology has a wider development space in medical field, underwater environment and flammable and explosive environment. Therefore, the research of radio energy transmission technology has important scientific significance and practical value. The main content of this paper is: 1. Firstly, the main application fields of CIPT technology are investigated, and the research status and application prospect of CIPT technology are introduced. At the same time, the key technologies and main research directions in the field of CIPT are analyzed. Finally, the problems that CIPT may face in the future are discussed. In this paper, the structure of each component of CIPT system is analyzed, and the generalized modulation control strategy of H-bridge resonant converter is proposed without changing the topology of the original resonant power converter. Then, the power flow control method based on generalized modulation of H-bridge resonant converter is studied, the phase angle margin of zvs soft switch is analyzed, the asymmetric pwm modulation is studied, and the equivalent circuit model is established to realize the advantage of zvs soft switch. It lays a theoretical foundation for the analysis and optimization design of voltage-type cipt system. Because of the low coupling coefficient of the magnetic field between the primary and secondary coils and the low active power absorbed by the load in the voltage-type cipt system, the efficiency of the radio energy transmission system will not be high. In this paper, the voltage source cipt system with primary and secondary side series resonance is studied. On the basis of not changing the original resonant power converter structure, the steady-state analytical model is established with the equivalent circuit of the system. The asymmetric pwm control strategy is applied to h bridge inverter, and the function relationship between the coupling power and the control angle 偽 is deduced. Furthermore, the switching state of the switch tube zvs is taken as the constraint condition. It has the advantages of increasing the phase angle margin of the zvs switch of the inverter, reducing the switching loss of the inverter, and improving the safety and reliability of the device in the cipt system. Simulation verifies the results of theoretical analysis and provides a theoretical reference for the design and analysis of voltage-source cipt system. Through theoretical analysis and repeated experimental tests, the effects of control methods on power conversion and cipt system performance are deeply studied and revealed, including: smooth control power flow caused by power conversion and suppression of system impact. Reduce the working stress of power device and reduce the electromagnetic interference in the process of power conversion. To solve these problems, a new modulation drive control scheme is proposed for h bridge resonant converter without changing the original resonant power converter structure, so as to constrain and optimize the power flow. Improve the device in wireless transmission of electrical energy security and reliability. 5. In order to verify the validity of asymmetric pwm modulation, the cipt system is simulated by matlab/simulink and the circuit is analyzed experimentally. When the switching frequency of the system is 20 kHz, the DC bus voltage is 50 V and the analog load is 10 惟, the output of the inverter voltage and current is observed. According to the actual operating results of the experimental platform, the following conclusions can be obtained: the overall design scheme of the radio energy transmission system studied in this paper is feasible, the theoretical analysis and parameter design are correct, the control method is effective, and the system works stably and reliably. The experimental platform can lay a solid theoretical foundation for the further study of CIPT technology in the future.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM724
【參考文獻】
相關(guān)期刊論文 前3條
1 秦海鴻;王慧貞;嚴(yán)仰光;;非接觸式松耦合感應(yīng)電能傳輸系統(tǒng)原理分析與設(shè)計[J];電源技術(shù)應(yīng)用;2004年05期
2 康重慶;陳啟鑫;夏清;;低碳電力技術(shù)的研究展望[J];電網(wǎng)技術(shù);2009年02期
3 唐曉雯;姚鋼;李軼立;顧臨峰;;非接觸電能傳輸系統(tǒng)不對稱PWM調(diào)制的研究[J];低壓電器;2013年21期
,本文編號:2062502
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2062502.html
最近更新
教材專著