壓電能量回收系統(tǒng)接口電路研究
發(fā)布時(shí)間:2018-06-19 09:13
本文選題:能量回收 + 壓電片 ; 參考:《南京航空航天大學(xué)》2014年碩士論文
【摘要】:為取代無線系統(tǒng)和便攜式電子設(shè)備目前采用的鋰電池供電方式,能量回收技術(shù)得到了迅速發(fā)展,其中壓電式能量回收系統(tǒng)因其體積小、輸出功率大、對(duì)電子器件不產(chǎn)生電磁干擾、易于器件的小型化等諸多優(yōu)點(diǎn)而受到國(guó)內(nèi)外學(xué)者的廣泛關(guān)注和研究。本文對(duì)壓電式能量回收系統(tǒng)的接口電路展開研究,主要研究?jī)?nèi)容和取得的成果如下: 1.結(jié)合壓電材料的第二類壓電方程和“彈簧+質(zhì)量+阻尼塊”振動(dòng)模型建立了能量回收系統(tǒng)的機(jī)電耦合模型,從原理上分析了能量回收系統(tǒng)的作用機(jī)理,研究了影響回收功率的系統(tǒng)參數(shù)。 2.設(shè)計(jì)了一種新的高效能量回收接口電路并命名為SCEI(Synchronous Charge Extractionand Inversion)接口電路,詳細(xì)闡明了SCEI接口電路的控制過程,推導(dǎo)了SCEI接口電路在恒定激振位移和恒定激振力情況下的理論回收功率,分析了該回收功率與控制開關(guān)導(dǎo)通時(shí)間的關(guān)系,并在電子仿真軟件Multisim中驗(yàn)證了SCEI接口的整個(gè)工作過程。 3.推導(dǎo)了Standard、SECE、Parallel-SSHI、Series-SSHI四種經(jīng)典接口電路在恒定激振位移和恒定激振力情況下的理論回收功率,分析了它們的回收功率與負(fù)載、機(jī)電耦合系數(shù)的關(guān)系。在此基礎(chǔ)上給出了SCEI接口電路與四種經(jīng)典接口電路回收功率的比較結(jié)果。結(jié)果表明:在恒定激振位移情況下并忽略buck-boost轉(zhuǎn)換效率時(shí),SCEI接口電路的回收功率大于四種經(jīng)典接口電路中具有最大回收功率的Parallel-SSHI電路,,而且SCEI接口電路的回收功率與負(fù)載無關(guān);在恒定激振力的情況下,隨著系統(tǒng)機(jī)電耦合系數(shù)的增大,SCEI接口電路的回收功率先增大后減小,表現(xiàn)出與SECE接口相似的性能。 4.根據(jù)壓電片的性質(zhì)建立了壓電片的電路等效模型,運(yùn)用此等效模型在Multisim中仿真了Standard、SECE、Parallel-SSHI、Series-SSHI和SCEI接口電路的控制過程和回收功率。 5.搭建能量回收裝置實(shí)驗(yàn)平臺(tái),在相同的激振水平下分別測(cè)得了Standard、SECE、Parallel-SSHI、Series-SSHI和SCEI接口電路在恒定激振位移情況下的回收功率與負(fù)載的關(guān)系,然后比較了這五種電路的實(shí)際回收功率大小以及回收功率與負(fù)載的關(guān)系。實(shí)驗(yàn)結(jié)果表明:當(dāng)buck-boost轉(zhuǎn)換器轉(zhuǎn)換效率為0.65時(shí),SCEI接口電路的實(shí)際回收功率略小于Parallel-SSHI接口的最大回收功率,并且SCEI接口的回收功率受負(fù)載的影響很小。
[Abstract]:In order to replace the current lithium battery power supply mode used in wireless system and portable electronic equipment, the energy recovery technology has been developed rapidly. Among them, piezoelectric energy recovery system has small size and large output power. Many advantages, such as no electromagnetic interference and easy miniaturization of electronic devices, have attracted extensive attention and research from scholars at home and abroad. In this paper, the interface circuit of piezoelectric energy recovery system is studied. The main contents and achievements are as follows: 1. Based on the piezoelectric equation of the second kind of piezoelectric material and the vibration model of "spring mass damping block", the electromechanical coupling model of the energy recovery system is established, and the mechanism of the energy recovery system is analyzed in principle. The system parameters affecting the recovery power are studied. 2. A new high efficiency energy recovery interface circuit named SCEI synchronous charge Extractionand version (SCEI) interface circuit is designed. The control process of sci interface circuit is described in detail. The theoretical recovery power of sci interface circuit under the condition of constant excitation displacement and constant excitation force is derived. The relationship between the recovery power and the switching on time is analyzed. The whole working process of sci interface is verified in the electronic simulation software Multisim. 3. 3. In this paper, the theoretical recovery power of four classical interface circuits of Standard Sec 茅 e Parallel-SSHI Series-SSHI under the condition of constant excitation displacement and constant excitation force is derived, and the relationship between the recovery power and the load and the electromechanical coupling coefficient is analyzed. On this basis, the comparison results between sci interface circuit and four classical interface circuits are given. The results show that the recovery power of sci interface circuit is larger than that of Parallel-SSHI circuit with maximum recovery power in four classical interface circuits, and the recovery power of sci interface circuit is independent of load when the excitation displacement is constant and the efficiency of buck-boost conversion is ignored. In the case of constant exciting force, the recovery power of the sci interface circuit increases first and then decreases with the increase of the electromechanical coupling coefficient of the system, showing a performance similar to that of the SECE interface. 4. According to the properties of piezoelectric chip, the circuit equivalent model of piezoelectric chip is established. The control process and recovery power of the interface circuit of Standard Sessel parallel-SSHISeries-SSHI and sci are simulated in Multisim by using this equivalent model. At the same excitation level, the relationship between the recovery power and the load of the standard SECECE-Parallel-SSHISeries-SSHI and scei interface circuits under the condition of constant excitation displacement is measured by setting up the experimental platform of the energy recovery device. Then the actual recovery power of the five circuits and the relationship between the recovery power and the load are compared. The experimental results show that the actual recovery power of the sci interface circuit is slightly smaller than the maximum recovery power of the Parallel-SSHI interface when the conversion efficiency of the buck-boost converter is 0.65, and the recovery power of the sci interface is little affected by the load.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM619
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 闞君武;唐可洪;王淑云;楊志剛;賈杰;曾平;;壓電懸臂梁發(fā)電裝置的建模與仿真分析[J];光學(xué)精密工程;2008年01期
2 袁江波;單小彪;謝濤;陳維山;;懸臂梁?jiǎn)尉弘姲l(fā)電機(jī)的實(shí)驗(yàn)[J];光學(xué)精密工程;2009年05期
本文編號(hào):2039374
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2039374.html
最近更新
教材專著