天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

大型風(fēng)力機(jī)葉片載荷智能控制系統(tǒng)應(yīng)用與機(jī)理研究

發(fā)布時(shí)間:2018-06-18 17:10

  本文選題:海上風(fēng)電 + 柔性尾緣襟翼�。� 參考:《中國(guó)科學(xué)院研究生院(工程熱物理研究所)》2015年碩士論文


【摘要】:由于海上風(fēng)電具有風(fēng)速高、不占地、沙塵少、運(yùn)行穩(wěn)定以及適合大規(guī)模開(kāi)發(fā)等優(yōu)勢(shì),全球風(fēng)場(chǎng)建設(shè)已呈現(xiàn)出從陸地向海上發(fā)展的趨勢(shì)。為了降低單位度電成本,海上風(fēng)電葉片的尺寸越來(lái)越大,目前已并網(wǎng)發(fā)電的V164-8.0 MW風(fēng)力機(jī)其葉輪直徑已高達(dá)160 m左右。葉片尺寸變大后,其柔性增強(qiáng),葉輪平面內(nèi)風(fēng)速差異變大,這都會(huì)削弱氣彈穩(wěn)定性,增大葉片載荷,從而容易導(dǎo)致葉片損壞。對(duì)于海上風(fēng)電來(lái)說(shuō),其制造成本和運(yùn)維成本都非常龐大,因此對(duì)風(fēng)力機(jī)的可靠性提出了更高的要求,而提高可靠性的關(guān)鍵在于降低葉片疲勞載荷和極限載荷。目前,風(fēng)力機(jī)的降載主要靠變槳來(lái)實(shí)現(xiàn),但這種技術(shù)動(dòng)作緩慢已無(wú)法應(yīng)對(duì)大型葉片上的局部隨機(jī)波動(dòng)載荷。為了發(fā)展更加有效的降載方法,早前誕生于直升機(jī)領(lǐng)域的“智能葉片”概念最近已被研究人員成功地引入到風(fēng)力機(jī)領(lǐng)域。它是一種主動(dòng)型的流動(dòng)控制技術(shù),通過(guò)傳感器,控制器和作動(dòng)器的組合裝置來(lái)實(shí)現(xiàn)局部氣動(dòng)表面變形。其原理是通過(guò)局部翼型表面變形后升力的變化來(lái)調(diào)節(jié)葉片受載。在眾多“智能葉片”作動(dòng)裝置中,柔性尾緣襟翼(DTEF)由于其具有反應(yīng)快速,調(diào)節(jié)范圍廣,流動(dòng)擾動(dòng)小等優(yōu)點(diǎn),從而被公認(rèn)為最有商業(yè)應(yīng)用價(jià)值的作動(dòng)裝置。針對(duì)這一領(lǐng)域,本課題組已成功搭建了基于DTEF的整機(jī)仿真平臺(tái),并討論了其對(duì)于標(biāo)準(zhǔn)湍流風(fēng)況下疲勞載荷以及風(fēng)速極端變化下極限載荷的控制效果。在課題組前期工作的基礎(chǔ)上,為推動(dòng)柔性尾緣襟翼(DTEF)進(jìn)一步的工業(yè)應(yīng)用,本文進(jìn)一步開(kāi)展了以下工作:(1)首先,本文集中探討了DTEF的四組主要參數(shù):中心位置Rf/R,展長(zhǎng)Lf/L,占弦比Cf/C以及最大擺動(dòng)角度|φf(shuō),max|對(duì)控制效果的影響。結(jié)果發(fā)現(xiàn):大體上,其控制效果是隨著這四組參數(shù)的增大而增大的。但例外的是,葉尖處DTEF的控制效果在額定風(fēng)速前后差別迥異。(2)接著,本文選取了一組典型的DTEF參數(shù),分析了DTEF控制系統(tǒng)在伴隨風(fēng)向變化的相干陣風(fēng)模型ECD風(fēng)況下的作用,該風(fēng)況代表了一種風(fēng)速風(fēng)向均發(fā)生急劇變化的風(fēng)況,是IEC標(biāo)準(zhǔn)中規(guī)定在發(fā)電狀況下需要進(jìn)行載荷校核的風(fēng)模型。結(jié)果表明:DTEF控制系統(tǒng)能夠有效地降低ECD風(fēng)況下載荷的波動(dòng),具體地,其葉根揮舞方向彎矩和葉尖變形量的波動(dòng)幅度均減少了30%左右。(3)最后,本文探討了三種工程上可實(shí)現(xiàn)的傳感器信號(hào)方案,其分別為:加速度、葉根揮舞方向彎矩和葉尖變形量。并分析,比較了三種方案之間DTEF控制效果的差異。結(jié)果表明葉根揮舞方向彎矩信號(hào)最優(yōu),其次為加速度信號(hào),葉尖變形量效果最差。(4)此外,本文也從葉片流動(dòng)-結(jié)構(gòu)間的氣彈耦合機(jī)理出發(fā),分析了DTEF控制系統(tǒng)背后的流動(dòng)控制機(jī)理。經(jīng)研究發(fā)現(xiàn):DTEF與葉片周?chē)鷼鈩?dòng)力反相運(yùn)動(dòng),從而打亂了葉片周?chē)鷼鈩?dòng)力與當(dāng)?shù)丶铀俣戎g較好的同步性,增加了葉片流動(dòng)-結(jié)構(gòu)系統(tǒng)間的阻尼,因此該控制系統(tǒng)能有效地抑制葉輪與傳動(dòng)鏈其他部件載荷的波動(dòng)。
[Abstract]:Due to the advantages of high wind speed, no land occupation, less sand dust, less dust, stable operation and suitable for large-scale development, the global wind field has been developing from land to sea. In order to reduce the unit cost of electricity, the size of the blade of the offshore wind power is getting bigger and bigger, and the diameter of the impeller diameter of V164-8.0 MW wind turbine, which has been connected to the grid before the mesh, is the diameter of the wind turbine. It has reached about 160 m. When the blade size becomes larger, its flexibility increases and the difference of wind speed in the plane of the impeller becomes larger. This will weaken the stability of the aeroelastic, increase the load of the blade, and lead to the damage of the blade. For the sea wind power, the cost of manufacturing and the operation and maintenance cost are very large, so the reliability of the wind turbine is higher. The key to improve the reliability is to reduce the blade fatigue load and the ultimate load. At present, the load reduction of the wind turbine is mainly realized by the variable propeller, but this technique is slow to cope with the local random fluctuating load on the large blade. In order to develop a more effective load reduction method, the "intelligent blade" was born earlier in the helicopter field. The concept has recently been successfully introduced into the field of wind turbines by researchers. It is an active flow control technology that uses a combination of sensors, controllers and actuators to achieve partial aerodynamic surface deformation. The principle is to regulate the loading of the blade through the change of the lift force after the surface deformation of the local airfoil. With the advantages of rapid reaction, wide adjustment range and small flow disturbance, the flexible tail flaps (DTEF) have been recognized as the most commercial actuating devices. In this field, our group has successfully built a DTEF based simulation platform, and discussed its fatigue in the standard turbulence wind condition. In order to promote the further industrial application of flexible tail flaps (DTEF), the following work has been carried out in this paper on the basis of the earlier work of the project group. (1) first, this paper focuses on the four main parameters of the four groups: the center position Rf/R, the extended Lf/L, and the chord ratio Cf/C As well as the effect of the maximum swing angle F and max| on the control effect, it is found that, in general, the control effect increases with the increase of these four sets of parameters. But the exception is that the control effect of DTEF at the tip of the blade is very different before and after the rated wind speed. (2) then a group of typical DTEF parameters are selected and the DTEF control system is analyzed. The wind condition, which is accompanied by wind direction change in the coherent gust model ECD wind condition, represents a sharp change in wind speed and wind direction. It is a wind model required to check the load in the IEC standard. The result shows that the DTEF control system can effectively reduce the fluctuation of the download load of the ECD wind condition, specifically, The wave amplitude of the blade root waving bending moment and leaf tip deformation decreased by about 30%. (3) finally, this paper discussed the sensor signal scheme which can be realized in three kinds of engineering, which are the acceleration, the direction bending moment of the leaf root and the deformation of the tip of the leaf. The difference between the effect of the DTEF control between the three schemes is compared. The results show that the difference between the control effect of the three schemes is compared. The blade root waving bending moment signal is the best, followed by the acceleration signal, the blade tip deformation effect is the worst. (4) in addition, this paper also analyzes the flow control mechanism behind the DTEF control system based on the aeroelastic coupling mechanism between the blade flow and the structure. It is found that the reverse movement of DTEF and the aerodynamic forces around the blade has disrupted the blade cycle. The good synchronization between the aerodynamic force and the local acceleration increases the damping between the blade flow and the structure system, so the control system can effectively restrain the fluctuation of the load of the impeller and other parts of the drive chain.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(工程熱物理研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM315

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 余畏;張明明;徐建中;;基于柔性尾緣襟翼的風(fēng)電葉片氣動(dòng)載荷智能控制[J];工程熱物理學(xué)報(bào);2013年06期

2 張明明;余畏;譚斌;徐建中;;極端風(fēng)剪切風(fēng)況下的風(fēng)電葉片載荷智能控制流動(dòng)機(jī)理研究[J];工程熱物理學(xué)報(bào);2014年10期



本文編號(hào):2036218

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2036218.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶48ad8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com