光伏發(fā)電效率檢測及跟蹤系統(tǒng)的實驗研究
發(fā)布時間:2018-06-10 18:56
本文選題:光伏發(fā)電效率 + MPPT; 參考:《廣西大學(xué)》2014年碩士論文
【摘要】:隨著環(huán)境污染和能源危機等問題的日益嚴(yán)峻,人們把焦點放在再生潔凈能源的開發(fā)和利用上。太陽能極其清潔,無污染,取不完,用不盡,得到各國的青睞。盡管光伏發(fā)電技術(shù)已日漸成熟,但光伏發(fā)電成本較高、效率偏低等問題依然存在。本文針對提高光伏發(fā)電效率開展研究。 首先根據(jù)光伏電池的等效電路,在Simulink中搭建仿真模型,研究溫度和光強對光伏電池輸出特性的影響。為使光伏電池在溫度和光強變化時能很快跟蹤到最大功率點,提高光伏能量的轉(zhuǎn)換效率,對常見的MPPT方法的原理進行比較并建立仿真模型。在此基礎(chǔ)上提出一種改進的MPPT方法,與常規(guī)MPPT法進行比較,結(jié)果表明改進后的控制算法跟蹤精度較高,穩(wěn)定性較好。 光伏組件的發(fā)電能力與其安裝的朝向有關(guān),合理選擇傾角和方位角能提高光伏組件的發(fā)電效率。為此,本文設(shè)計并研制出一套光伏發(fā)電效率檢測系統(tǒng),使用MFC開發(fā)工具設(shè)計軟件監(jiān)控界面。該系統(tǒng)由12塊光伏組件組成,采用電容充放電法,對光伏組件的伏安特性進行掃描并尋找到該時刻最大功率點,定時采集光伏組件最大功率點電壓、電流、功率等數(shù)據(jù),并根據(jù)上位機的指令傳送數(shù)據(jù)并寫入數(shù)據(jù)庫。對數(shù)據(jù)庫中保存的近一年的數(shù)據(jù)進行分析,比較光伏組件的實時發(fā)電功率、日總發(fā)電量和月總發(fā)電量,給出南寧地區(qū)光伏陣列最佳的安裝傾角和方位角建議。 本課題還進行了太陽能雙軸跟蹤系統(tǒng)的軟硬件設(shè)計,系統(tǒng)硬件主要由芯片電源、光電傳感器、風(fēng)速傳感和限位開關(guān)、電機驅(qū)動電路組成;軟件主要包括主程序、系統(tǒng)初始化、光電跟蹤子程序等部分。利用太陽能雙軸跟蹤系統(tǒng)進行南寧地區(qū)光伏發(fā)電實驗,得到有關(guān)的數(shù)據(jù)并與固定式光伏系統(tǒng)(正南22°傾角)進行比較。實驗結(jié)果表明,所設(shè)計的雙軸跟蹤系統(tǒng)的發(fā)電效率比固定式系統(tǒng)提高了近35%,對實際工程應(yīng)用有一定的參考價值。
[Abstract]:With the increasing severity of environmental pollution and energy crisis, people focus on the development and utilization of renewable and clean energy. Solar energy is extremely clean, pollution-free, endless, inexhaustible, favored by all countries. Although photovoltaic power generation technology is becoming more and more mature, there are still some problems such as high cost and low efficiency of photovoltaic power generation. Firstly, according to the equivalent circuit of photovoltaic cells, a simulation model is built in Simulink to study the effect of temperature and light intensity on the output characteristics of photovoltaic cells. In order to track the maximum power point quickly and improve the efficiency of photovoltaic energy conversion, the principle of common MPPT method is compared and the simulation model is established. On this basis, an improved MPPT method is proposed, which is compared with the conventional MPPT method. The results show that the improved control algorithm has higher tracking accuracy and better stability. Reasonable selection of inclination angle and azimuth angle can improve the efficiency of photovoltaic module. Therefore, this paper designs and develops a photovoltaic generation efficiency detection system, and uses MFC development tools to design the software monitoring interface. The system is composed of 12 photovoltaic modules. The volt-ampere characteristic of the PV module is scanned by capacitive charge-discharge method and the maximum power point at this time is found. The maximum power point voltage, current and power of the photovoltaic module are collected at the same time. And according to the instructions of the host computer to transmit data and write to the database. The data stored in the database for nearly one year are analyzed, and the real time generation power, the daily total power generation and the monthly total power generation of the photovoltaic module are compared. The optimal installation inclination angle and azimuth angle of photovoltaic array in Nanning area are given. The software and hardware design of solar biaxial tracking system is also carried out. The hardware of the system is mainly composed of chip power supply, photoelectric sensor, wind speed sensor and limit switch. The main software includes main program, system initialization, photoelectric tracking subroutine and so on. The solar biaxial tracking system is used to carry out photovoltaic power generation experiment in Nanning area. The relevant data are obtained and compared with the fixed photovoltaic system (22 擄inclination to the south). The experimental results show that the power generation efficiency of the designed biaxial tracking system is nearly 35% higher than that of the fixed system, which has some reference value for practical engineering application.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM615
【參考文獻】
相關(guān)期刊論文 前7條
1 王志偉;;西班牙采用聯(lián)合投資形式開發(fā)太陽能電站[J];中國建設(shè)動態(tài).陽光能源;2006年02期
2 顧超,崔容強;獨立光伏系統(tǒng)最佳傾角計算新方法[J];電源技術(shù);2005年01期
3 劉春;馬維華;;基于ARH的太陽能發(fā)電控制系統(tǒng)的設(shè)計與實現(xiàn)[J];電子產(chǎn)品世界;2009年01期
4 雷曉瑜;曹廣忠;;TMS320F28335及其最小應(yīng)用系統(tǒng)設(shè)計[J];電子設(shè)計工程;2009年01期
5 聶斐;殷興輝;;基于MFC的實時數(shù)據(jù)動態(tài)顯示界面設(shè)計[J];電子設(shè)計工程;2013年10期
6 王擎宇;龔仁喜;李畸勇;俸昭合;;三維電子羅盤在太陽雙軸跟蹤系統(tǒng)角度測量中的應(yīng)用[J];電測與儀表;2013年09期
7 張克農(nóng),趙云鵬,蔣昕,張慶龍;自帶光源的便攜式太陽電池陣列測試系統(tǒng)[J];可再生能源;2005年04期
,本文編號:2004255
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2004255.html
最近更新
教材專著