鋰離子電池組能量均衡時序優(yōu)化及控制
發(fā)布時間:2018-06-09 22:58
本文選題:鋰離子電池組 + 非線性PID算法; 參考:《重慶大學》2014年碩士論文
【摘要】:隨著不可再生能源的大量消耗和環(huán)境污染程度日趨嚴重,新能源的開發(fā)利用已經(jīng)迫在眉睫,混和動力電動車和純電動車,光伏發(fā)電和風力發(fā)電設備遍布世界各個角落。鋰離子電池具有比能量大、循環(huán)壽命長、自放電率低和無記憶效應等優(yōu)點廣泛應用為能量存儲設備,成為了當前最具發(fā)展前景的動力電池。但是由于在串聯(lián)鋰離子電池組中的每單個電池的特征屬性不能完全一致,在使用的過程中會存在能量不平衡情況造成電池組損壞。所以需要對串聯(lián)電池組的能量進行均衡,以保證特征屬性一致,延長電池的使用壽命。目前,國內(nèi)外的專家已經(jīng)提出了不少針對鋰離子電池能量管理的控制策略,主要包括均衡電路和控制算法的設計。但就目前的研究情況來看,該控制系統(tǒng)還存在著很多的問題,均衡結(jié)構(gòu)復雜難以實現(xiàn)、控制精度差、均衡效率低等。針對目前的研究情況,論文采用了一種針對無損均衡電路的非線性PID控制算法,并針對無損均衡網(wǎng)絡結(jié)構(gòu),采用動態(tài)規(guī)劃思想,設計了一種能量路徑優(yōu)化算法以提高均衡的效率,減少均衡時間和均衡過程中的能量損失。論文的主要工作如下: ①對無損均衡電路的電壓電流進行了分析,根據(jù)能量傳輸途徑和交換過程建立了系統(tǒng)的數(shù)學模型。 ②研究了目前已有的均衡控制算法,結(jié)合電池組模型,采用非線性PID控制算法對單個均衡電路進行了控制,解決了控制系統(tǒng)中控制精度不高、且穩(wěn)態(tài)電壓震蕩等問題。 ③運用動態(tài)規(guī)劃思想,提出了一種鋰離子電池組均衡系統(tǒng)能量路徑優(yōu)化算法,對系統(tǒng)中的均衡順序和能量流進行優(yōu)化控制,使整個系統(tǒng)運行在最優(yōu)狀態(tài)下,減少能量損失,提高了均衡效率。 ④通過仿真對模糊控制算法、非線性PID算法進行了比對,分析各算法的優(yōu)劣。搭建了10節(jié)鋰離子電池組均衡控制系統(tǒng)實驗平臺,對提出的算法進行了實驗驗證,并取得了較好的實驗效果。 綜上所述,論文針對目前鋰離子電池組均衡控制系統(tǒng)的不足,提出了一種能夠避免電流、電壓振蕩,提高均衡速度的均衡控制算法,,用于單個均衡電路的控制;并針對整個均衡系統(tǒng)的網(wǎng)絡結(jié)構(gòu),運用動態(tài)規(guī)劃思想,建立了一套鋰離子電池組優(yōu)化控制方法。通過對均衡路徑的規(guī)劃,實現(xiàn)了均衡系統(tǒng)的優(yōu)化控制,提高了均衡效率和減少了均衡時間。通過仿真和實驗證明了算法能有效的解決鋰離子電池組能量均衡系統(tǒng)中的控制和優(yōu)化問題,滿足了系統(tǒng)的應用需求。
[Abstract]:With the large consumption of non-renewable energy and the increasingly serious environmental pollution, the development and utilization of new energy is imminent. Hybrid electric vehicles and pure electric vehicles, photovoltaic power generation and wind power generation equipment all over the world. Lithium-ion batteries have been widely used as energy storage devices with the advantages of large specific energy, long cycle life, low self-discharge rate and no memory effect, and have become the most promising power battery. However, because the characteristic attributes of each single cell in the series lithium ion battery are not completely consistent, there will be energy imbalance in the process of use, which will lead to battery damage. So it is necessary to equalize the energy of the series battery to ensure the consistency of the characteristic attributes and prolong the life of the battery. At present, experts at home and abroad have put forward many control strategies for energy management of lithium ion batteries, including the design of equalization circuit and control algorithm. However, according to the current research situation, there are still many problems in the control system, such as the complexity of the equilibrium structure is difficult to achieve, the control accuracy is poor, the balance efficiency is low, and so on. According to the current research situation, this paper adopts a nonlinear pid control algorithm for lossless equalization circuit, and adopts the idea of dynamic programming for lossless equalization network structure. An energy path optimization algorithm is designed to improve the equalization efficiency and reduce the equalization time and energy loss in the equalization process. The main work of this paper is as follows: 1 the voltage and current of the lossless equalization circuit are analyzed, and the mathematical model of the system is established according to the energy transmission path and the switching process. 2 the existing equalization control algorithms are studied, combined with the battery pack model. The nonlinear pid control algorithm is used to control a single equalization circuit, which solves the problems of low control precision and steady voltage oscillation in the control system. In this paper, an energy path optimization algorithm for lithium ion battery equalization system is proposed, which optimizes the equalization sequence and energy flow in the system, makes the whole system run in the optimal state and reduces the energy loss. The equalization efficiency is improved. 4 the comparison of fuzzy control algorithm and nonlinear pid algorithm is carried out through simulation, and the advantages and disadvantages of each algorithm are analyzed. The experimental platform of 10 lithium ion battery equalization control system is built, and the proposed algorithm is verified experimentally, and good experimental results are obtained. In summary, the thesis aims at the deficiency of the current lithium ion battery equalization control system. An equalization control algorithm which can avoid current and voltage oscillation and improve equalization speed is proposed, which can be used to control a single equalization circuit, and dynamic programming is applied to the network structure of the whole equalization system. A set of optimal control method for lithium ion battery was established. By programming the equilibrium path, the optimal control of the equalization system is realized, the equalization efficiency is improved and the equalization time is reduced. Simulation and experiments show that the algorithm can effectively solve the control and optimization problems in the Li-ion battery energy equalization system, and meet the application needs of the system.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912
【參考文獻】
相關(guān)期刊論文 前4條
1 李平;何明華;;一種鋰電池組均衡電路及其控制策略設計[J];電源技術(shù);2011年10期
2 黃勤;嚴賀彪;凌睿;;串聯(lián)鋰電池組無損均衡管理方案設計與實現(xiàn)[J];計算機工程;2011年12期
3 雷文彬;;一種非線性PID控制算法的仿真研究[J];計算機仿真;2012年04期
4 凌睿;董燕;嚴賀彪;武美蓉;;基于非線性PID的串聯(lián)鋰離子電池組的均衡控制[J];計算機工程與應用;2013年13期
本文編號:2001114
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2001114.html
教材專著