高性能纖維狀太陽能電池
發(fā)布時間:2018-06-03 17:02
本文選題:碳納米管 + 石墨烯 ; 參考:《復(fù)旦大學(xué)》2014年博士論文
【摘要】:無論是傳統(tǒng)的硅基太陽能電池還是新型有機太陽能電池,一般為平面結(jié)構(gòu),難以滿足現(xiàn)代電子設(shè)備越來越集成化、微型化、輕量化的迫切發(fā)展需要,尤其是嚴重制約它們在便攜式、可穿戴電子產(chǎn)品領(lǐng)域的應(yīng)用。為了解決上述難題,近年來人們提出了構(gòu)建纖維狀太陽能電池的設(shè)想。與平面太陽能電池相比,直徑在微米尺度的纖維狀太陽能電池具有質(zhì)量更輕、柔性更好、受光面更廣、集成性更強等優(yōu)勢,特別是可以像化學(xué)纖維一樣,通過低成本的紡織技術(shù)進行大規(guī)模應(yīng)用。但目前纖維狀太陽能電池均為脆性結(jié)構(gòu),而對于微米尺度的纖維狀太陽能電池,難以承受使用過程中所產(chǎn)生的張力而可能被拉斷,無法充分發(fā)揮纖維狀結(jié)構(gòu)的應(yīng)用優(yōu)勢。因此,發(fā)展具有良好彈性的可拉伸纖維狀太陽能電池,是解決上述應(yīng)用瓶頸的必由之路。本學(xué)位論文以石墨烯和碳納米管等碳納米材料為電極,在提高纖維狀太陽能電池光電轉(zhuǎn)換效率的基礎(chǔ)上,重點發(fā)展出可拉伸的染料敏化太陽能電池及其集成器件,在此基礎(chǔ)上進一步探討了纖維狀太陽能電池的編織性能。主要內(nèi)容概括如下:高光電轉(zhuǎn)換效率的纖維狀染料敏化太陽能電池。提高光電轉(zhuǎn)換效率的關(guān)鍵是發(fā)展高性能的纖維電極材料,本學(xué)位論文首先通過濕法紡絲合成石墨烯纖維,然后通過電化學(xué)沉積鉑納米粒子制備具有優(yōu)異電學(xué)和催化性能的復(fù)合纖維作為對電極,以陽極氧化法制備表面修飾二氧化鈦納米管陣列的鈦絲作為工作電極,兩根纖維電極纏繞而得到纖維狀染料敏化太陽能電池。通過優(yōu)化電極材料和結(jié)構(gòu),光電轉(zhuǎn)換效率達到8.45%,并經(jīng)第三方獨立機構(gòu)認證,是目前纖維狀太陽能電池中國際上所報導(dǎo)的最高效率。進一步開展了系統(tǒng)的規(guī)律和機制研究,發(fā)現(xiàn)石墨烯與鉑納米粒子間存在較強的相互作用,電化學(xué)沉積過程中鉑納米粒子在石墨烯纖維表面均勻穩(wěn)定分散,具有較高的比表面積,因此復(fù)合纖維電極顯示較高的電催化性能,從而獲得高效率的纖維狀太陽能電池。彈性纖維狀染料敏化太陽能電池。構(gòu)建彈性纖維狀太陽能電池的一個關(guān)鍵是發(fā)展可拉伸纖維電極,本學(xué)位論文發(fā)展了一種制備可拉伸纖維電極的普適性方法,即把具有高導(dǎo)電率的納米薄膜材料如取向碳納米管薄膜通過旋轉(zhuǎn)平移法緊密地纏繞在彈性纖維基底上,在拉伸過程中取向碳納米管結(jié)構(gòu)保持不變,從而獲得了彈性的導(dǎo)電纖維。這類纖維在拉伸100%后仍然保持較高的電導(dǎo)率。然后以取向碳納米管彈性纖維作為對電極,以二氧化鈦納米管修飾的螺旋狀鈦絲作為工作電極,把彈性纖維對電極插入到螺旋狀工作電極中即可得到彈性纖維狀染料敏化太陽能電池,最高光電轉(zhuǎn)換效率達到7.13%,并在拉伸30%后基本保持不變。彈性纖維狀染料敏化太陽能電池的集成。對于纖維狀太陽能電池,另一個重要挑戰(zhàn)是如何把從產(chǎn)生的電能儲存起來,從而滿足不同時間和場合的需要。為了解決這個挑戰(zhàn),本學(xué)位論文在彈性纖維狀染料敏化太陽能電池上進一步集成了彈性的超級電容器,從而發(fā)展出一類新型的彈性纖維狀集成能源器件。首先,基于旋轉(zhuǎn)平移法制備了高性能的彈性纖維狀超級電容器,比容達到19.2法拉/克,并在拉伸75%的情況下保持穩(wěn)定。然后,把超級電容器與太陽能電池以同軸結(jié)構(gòu)的方式集成在同一根彈性纖維上,獲得集成器件,能量轉(zhuǎn)換和儲存效率最高可以達到1.83%,而且在50次拉伸后保持良好的穩(wěn)定性。纖維狀太陽能電池織物。纖維狀太陽能電池的一個獨特優(yōu)勢在于可以通過低成本的紡織技術(shù)實現(xiàn)規(guī)模化應(yīng)用,但這方面研究尚處于起步階段。本學(xué)位論文進一步把高效率的纖維狀染料敏化太陽能電池進行編織,得到的太陽能電池織物具有良好的柔性和彈性,并且保持較高的光電轉(zhuǎn)換效率:織物的輸出電流和電壓可以通過纖維電池的并聯(lián)和串聯(lián)得到有效調(diào)控?偨Y(jié)來說,本學(xué)位論文以碳納米纖維材料作為對電極,發(fā)展出彈性、高效率、可集成、可編織的纖維狀染料敏化太陽能電池,比較系統(tǒng)地研究了在纖維狀電極中碳納米材料表面和界面對電荷分離與傳輸?shù)挠绊懸?guī)律,為纖維狀太陽能電池的應(yīng)用提供了理論和實驗支持,也為可穿戴能源器件的發(fā)展提供了新的思路和方法。
[Abstract]:Both traditional silicon based solar cells and new organic solar cells are generally planar structures, which are difficult to meet the urgent development of modern electronic devices, which are increasingly integrated, miniaturized and lightweight, especially in the field of portable and wearable electronic products. Compared with flat solar cells, fiber like solar cells in diameter on the micron scale have the advantages of lighter quality, better flexibility, wider light surface and stronger integration, especially for large-scale applications through low cost textile technology, like chemical fibers. The fiber like solar cells are all brittle structures, and the fiber like solar cells of the micron scale are difficult to withstand the tension produced in the process of use and may be broken and can not give full play to the advantages of the fiber like structure. Therefore, the development of a stretchable fiber like solar cell with good elasticity is a solution to the above application. On the basis of improving the photoelectric conversion efficiency of fiber like solar cells, the paper focuses on the development of extensible dye-sensitized solar cells and their integrated devices. On this basis, the braiding of fiber like solar cells is discussed on this basis. The main contents are as follows: fiber like dye sensitized solar cells with high photoelectric conversion efficiency. The key to improving the efficiency of photoelectric conversion is the development of high performance fiber electrode materials. First, the preparation of graphene fibers by wet spinning is the first part of this dissertation, and the electrodeposition of platinum nanoparticles has excellent electrical and catalytic properties. The composite fiber of chemical properties is used as the opposite electrode, and the titanium wire of the surface modified titanium dioxide nanotube array is prepared by anodic oxidation as the working electrode, and the fiber like dye sensitized solar cell is obtained by twining two fiber electrodes. By optimizing the electrode material and structure, the photoelectric conversion efficiency reaches 8.45% and is certified by the third party independent mechanism. It is the highest efficiency reported internationally in fiber like solar cells. The law and mechanism of the system have been further studied. It is found that there is a strong interaction between graphene and platinum nanoparticles. In the process of electrochemical deposition, the platinum nanoparticles are evenly dispersed on the surface of graphene fibers, and thus have a high specific surface area. The composite fiber electrode shows high electrocatalytic performance, thus obtaining high efficiency fiber like solar cells. Elastic fiber like dye sensitized solar cells. The key to the construction of elastic fiber like solar cells is the development of tensile fiber electrodes. This dissertation develops a universal method for the preparation of extensible fiber electrodes. The nano thin film materials with high conductivity, such as the orientated carbon nanotube film, are tightly wound on the elastic fiber substrate by the rotation translation method. During the stretching process, the structure of the orientated carbon nanotube remains unchanged, thus the elastic conductive fiber is obtained. The fibers still maintain a high conductivity after stretching 100%. The elastic fiber of the carbon nanotube is used as the electrode and the spiral titanium wire modified by the titanium dioxide nanotube is used as the working electrode. The elastic fiber dye sensitized solar cell can be obtained by inserting the elastic fiber into the spiral working electrode. The maximum photoelectric conversion efficiency reaches 7.13%, and the elasticity is basically kept unchanged after the stretch of 30%. The integration of fibrous dye-sensitized solar cells. Another important challenge for fiber like solar cells is how to store electrical energy from the generated energy to meet the needs of different times and occasions. In order to solve this challenge, this dissertation further integrates elasticity on elastic fiber dye sensitized solar cells. Supercapacitors, thus developing a new type of elastic fiber integrated energy devices. First, a high performance elastic fiber like supercapacitor is prepared based on the rotation translation method. The specific capacitance reaches 19.2 Fala / g and is stable under the tension of 75%. Then, the supercapacitor and the solar cell are set in a coaxial structure. An integrated device is obtained on the same elastic fiber, with a maximum energy conversion and storage efficiency of 1.83% and good stability after 50 stretches. Fiber like solar cell fabric. A unique advantage of fiber like solar cells is that it can be applied in a large scale by low cost of textile technology. The study is still in the initial stage. This dissertation further weaves the high efficiency fiber like dye sensitized solar cells. The obtained solar cell fabric has good flexibility and elasticity, and maintains high photoelectric conversion efficiency: the output current and electrical pressure of the fabric can be connected and connected through the parallel and series of fiber batteries. In conclusion, this dissertation uses carbon nanofibers as a pair of electrodes to develop an elastic, efficient, integrated, woven, fiber like dye-sensitized solar cell. The influence of the surface and boundary of carbon nanomaterials on the charge separation and transmission in fibrous electrodes is systematically studied. The application of solar cells provides theoretical and experimental support, and provides new ideas and methods for the development of wearable energy devices.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM914.4
【相似文獻】
相關(guān)期刊論文 前10條
1 ;太陽能的特點及當前太陽能利用研究中的主要課題[J];哈鐵科技通訊;1979年07期
2 高富強;張小嬌;周日峰;須民健;張亞瓊;;低能X射線工業(yè)CT探測器光電轉(zhuǎn)換效率的研究[J];核電子學(xué)與探測技術(shù);2010年10期
3 蘇婷;王金梅;臺流臣;;改進電導(dǎo)增量法在提高光電轉(zhuǎn)換效率中的研究[J];自動化儀表;2012年12期
4 叢偉;巴德純;李江;韓恩相;;基于正交試驗法TiO_2納米薄膜的制備及光電性能的研究[J];真空科學(xué)與技術(shù)學(xué)報;2013年06期
5 毛寶良;硅太陽能電池提高光電轉(zhuǎn)換效率[J];電工技術(shù)雜志;1992年03期
6 董偉;日本太陽能電池光電轉(zhuǎn)換效率達20%[J];能源研究與信息;2004年01期
7 梁茂;王旭達;袁穎;孫U,
本文編號:1973530
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1973530.html
最近更新
教材專著