輸電線路桿塔接地系統(tǒng)沖擊散流特性及影響因素研究
本文選題:CDEGS + 接地系統(tǒng)。 參考:《西南交通大學(xué)》2014年碩士論文
【摘要】:電力系統(tǒng)運(yùn)行經(jīng)驗(yàn)表明,接地技術(shù)對電力系統(tǒng)的安全穩(wěn)定運(yùn)行有著重要的影響。我國電網(wǎng)正朝著更大規(guī)模、更高功率、更加智能的方向發(fā)展,這些發(fā)展對現(xiàn)階段電網(wǎng)可靠、安全、有效的運(yùn)行提出了更高的挑戰(zhàn),輸電線路桿塔接地極的沖擊接地電阻直接影響輸電線路的防雷保護(hù)效果,而輸電線路桿塔的防雷性能與接地系統(tǒng)的沖擊散流特性密切相關(guān)。本文主要研究輸電線路桿塔接地系統(tǒng)的沖擊散流特性,分析接地系統(tǒng)沖擊散流特性的影響因素及影響規(guī)律,為實(shí)際工程中接地系統(tǒng)設(shè)計(jì)提供技術(shù)支持。 首先本文綜述了輸電線路桿塔及其接地系統(tǒng)沖擊特性的研究現(xiàn)狀,隨后介紹了幾種典型的輸電桿塔仿真模型,分析了現(xiàn)有接地系統(tǒng)暫態(tài)計(jì)算模型、試驗(yàn)方法及應(yīng)用范圍。計(jì)算了典型雷電波頻譜,探明沖擊電流下接地極的散流機(jī)理及土壤電阻率對接地極沖擊散流的影響規(guī)律。 其次采用電磁仿真軟件CDEGS搭建輸電線路桿塔接地系統(tǒng)雷電沖擊散流模型,研究接地系統(tǒng)沖擊散流的影響因素,發(fā)現(xiàn)隨著雷電流波前時(shí)間變長、桿塔高度降低、橫擔(dān)寬度變大、土壤電阻率降低、接地極長度增長,塔頂及接地極沖擊電壓峰值降低,隨著雷電流半波時(shí)間變長、土壤電阻率上升、輸電桿塔檔距減小,避雷線分流增加,被擊桿塔分流減少。 最后采用ATP-EMTP建立考慮火花放電的接地極分布參數(shù)電路模型,計(jì)算模型中電氣參數(shù)以及接地導(dǎo)體間互感大小;谠撃P头治隽藛胃浇拥貥O、兩兩平行接地極和Y型接地極的沖擊暫態(tài)響應(yīng)。建立沖擊試驗(yàn)平臺(tái),對水平接地極進(jìn)行了沖擊放電試驗(yàn),通過分析試驗(yàn)結(jié)果和仿真結(jié)果揭示火花放電下接地極的沖擊散流特性。
[Abstract]:The operation experience of power system shows that grounding technology has an important influence on the safe and stable operation of power system. The power grid of our country is developing towards the direction of larger scale, higher power and more intelligence. These developments pose a higher challenge to the reliable, safe and effective operation of the power grid at this stage. The impact grounding resistance of the earth pole of the transmission line tower directly affects the lightning protection effect of the transmission line, while the lightning protection performance of the transmission line tower is closely related to the impact and dispersion characteristics of the grounding system. In this paper, the characteristics of shock current in grounding system of transmission line tower are studied, and the influencing factors and rules of impact current characteristics of grounding system are analyzed in order to provide technical support for the design of grounding system in practical engineering. In this paper, the current situation of research on the impact characteristics of transmission line tower and its grounding system is summarized, then several typical simulation models of transmission tower are introduced, and the existing transient calculation model, test method and application range of grounding system are analyzed. The spectrum of typical lightning wave is calculated, and the mechanism of earth pole dispersion under impulse current and the influence of soil resistivity on the impact current of the earth pole are investigated. Secondly, the electromagnetic simulation software CDEGS is used to build the lightning shock current model of the transmission line tower grounding system, and the influence factors of the impact scattering current of the grounding system are studied. It is found that with the increase of the lightning current wave front time, the height of the pole tower decreases, and the width of the cross pole becomes larger. The soil resistivity decreases, the earth pole length increases, and the peak impulse voltage of tower top and earth pole decreases. With the increase of lightning current half-wave time, the soil resistivity increases, the distance of transmission tower decreases, the distribution of lightning arrester increases, and the shunt of struck tower decreases. Finally, ATP-EMTP is used to set up the circuit model of earth pole distribution parameters considering spark discharge. The electrical parameters and the mutual inductance between grounding conductors are calculated in the model. Based on the model, the impulse transient response of single horizontal earth pole, parallel ground pole and Y type earth pole is analyzed. An impact test platform was established to test the impact discharge of the horizontal ground electrode. The characteristics of the impact dispersion of the ground electrode under spark discharge were revealed by analyzing the test results and the simulation results.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM75;TM862
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高延慶,何金良,曾嶸;接地網(wǎng)格的雷電沖擊特性[J];電工技術(shù)雜志;2002年12期
2 谷定燮;我國500kV輸變電工程過電壓設(shè)計(jì)方面存在的問題和改進(jìn)措施[J];電力建設(shè);2002年07期
3 舒印彪,趙丞華;研究實(shí)施中的500kV同塔雙回緊湊型輸電線路[J];電網(wǎng)技術(shù);2002年04期
4 齊磊;崔翔;趙志斌;;復(fù)雜接地系統(tǒng)沖擊接地特性的數(shù)值計(jì)算及試驗(yàn)[J];電網(wǎng)技術(shù);2006年13期
5 楊琳;吳廣寧;李建明;;接地網(wǎng)沖擊特性試驗(yàn)[J];電網(wǎng)技術(shù);2010年03期
6 夏長征,陳慈萱;單位長度伸長接地體沖擊特性的真型試驗(yàn)[J];高電壓技術(shù);2001年03期
7 夏長征,陳慈萱,文習(xí)山;伸長接地體上沖擊電流和電壓分布特性的研究[J];高電壓技術(shù);2002年05期
8 吳茂林,崔翔;變電站地電位差對屏蔽電纜的電磁干擾分析[J];高電壓技術(shù);2005年03期
9 司馬文霞;李曉麗;袁濤;楊慶;;不同結(jié)構(gòu)土壤中接地網(wǎng)沖擊特性的測量與分析[J];高電壓技術(shù);2008年07期
10 張波;余紹峰;孔維政;何金良;;接地裝置雷電沖擊特性的大電流試驗(yàn)分析[J];高電壓技術(shù);2011年03期
相關(guān)博士學(xué)位論文 前1條
1 李景麗;接地網(wǎng)頻域性能及桿塔接地極沖擊特性的數(shù)值分析及試驗(yàn)研究[D];重慶大學(xué);2011年
,本文編號:1963806
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1963806.html