湖底污泥微生物燃料電池的研究
發(fā)布時間:2018-05-31 08:30
本文選題:微生物燃料電池 + 湖底污泥; 參考:《重慶大學》2014年碩士論文
【摘要】:微生物燃料電池是一種將生物能直接轉化為電能的環(huán)境友好、可循環(huán)使用的新技術,尤其在廢水處理、新型能源等領域極具發(fā)展前景。微生物燃料電池的電化學性能主要與負極材料種類、生物相容性以及微生物與電極間電子傳遞阻力密切相關。本文旨在通過各類電化學測試技術,針對以湖底污泥為菌源,自然狀態(tài)下運行的微生物燃料電池及其負極修飾展開研究。 本文首先對采自民主湖的菌源進行5個周期的小電流間歇通電馴化,得到電化學活性菌源。然后分別使用不銹鋼網(wǎng)、泡沫鎳和碳刷3種材料作為負極,以標準三電極和雙室質(zhì)子交換膜電池系統(tǒng)分析評價其電化學性能。結果表明,開路電壓和循環(huán)伏安曲線峰電流在一定時間內(nèi)隨著培養(yǎng)時間延長,分別呈現(xiàn)負移和增大的趨勢,表明電化學活性逐步改善。時間進一步延長,隨著營養(yǎng)物質(zhì)的消耗和負極室內(nèi)細菌代謝產(chǎn)物積累,性能有降低趨勢。同期交流阻抗分析顯示,培養(yǎng)后電極電化學阻抗、擴散阻抗均有不同程度下降。最后電池系統(tǒng)測試表明,不銹鋼網(wǎng)、泡沫鎳和碳刷最大開路電壓分別為300mV,380mV和460mV,最大輸出功率分別為0.071μW,7.284μW和41.823μW。 在上述研究基礎上,采用鄰苯二酚紫對電極材料進行修飾。循環(huán)伏安、交流阻抗等電化學測試均表明鄰苯二酚紫能作為電子傳輸中介體,在電極表面吸附成膜,提高電子傳輸效率,所以對提升電極電化學性能有一定作用。電池組裝測試表明,鄰苯二酚紫對不銹鋼網(wǎng)和泡沫鎳系統(tǒng)的修飾效果較為明顯,最大輸出功率分別提升14%和60%;修飾后碳刷系統(tǒng)雖然開路電壓提升38%,但輸出功率下降78%,結合循環(huán)伏安測試結果和碳刷電極使用后形貌分析,認為鄰苯二酚紫在碳纖維間吸附,對孔隙率、表面積等電極結構產(chǎn)生較大影,造成產(chǎn)電能力下降。 綜上所述,本文以湖底污泥為菌源,分別采用不銹鋼網(wǎng)、泡沫鎳和碳刷成功搭建了自然條件下運行的雙室微生物燃料電池,采用鄰苯二酚紫對負極材料進行修飾初見成效。此外,電池負極室電解液化學需氧量測試表明,裝置運行期間化學需氧量降解率最高可達85%以上,,表現(xiàn)出對污水凈化的潛在能力。
[Abstract]:Microbial fuel cell is a kind of environment-friendly and recyclable new technology which can directly convert bioenergy into electric energy, especially in the field of wastewater treatment and new energy. The electrochemical performance of microbial fuel cells is mainly related to the types of negative electrode materials, biocompatibility and electron transfer resistance between microbes and electrodes. The purpose of this paper is to study the modification of microbial fuel cell and its negative electrode under natural condition by various electrochemical testing techniques. In this paper, we first acclimated the bacteria collected from the lake of Democracy with five cycles of intermittent low current electrification, and obtained the electrochemically active bacteria source. Then three kinds of materials, stainless steel mesh, foamed nickel and carbon brush, were used as negative electrodes, and their electrochemical performance was evaluated by standard three-electrode and two-chamber proton exchange membrane battery system. The results showed that the open circuit voltage and the peak current of cyclic voltammetry curve showed a negative shift and an increasing trend with the increase of culture time in a certain time, indicating that the electrochemical activity was gradually improved. With the consumption of nutrients and the accumulation of bacterial metabolites in the negative electrode room, the performance decreased with the further prolongation of the time. Simultaneous AC impedance analysis showed that the electrochemical impedance and diffusion impedance of the electrode decreased in varying degrees after culture. The final battery system test shows that the maximum open circuit voltage of stainless steel net, foamed nickel and carbon brush is 300mV 380mV and 460mV, respectively, and the maximum output power is 0.071 渭 W 7.284 渭 W and 41.823 渭 W respectively. Based on the above study, the electrode material was modified with catechol violet. The electrochemical measurements such as cyclic voltammetry and AC impedance indicate that catechol violet can act as an electron transport intermediary, adsorb on the electrode surface to form a film and improve the efficiency of electron transport, so it plays a certain role in improving the electrochemical performance of the electrode. The battery assembly test showed that the modification effect of catechol violet on stainless steel mesh and nickel foam system was obvious. The maximum output power was increased by 14% and 60%, respectively. Although the open circuit voltage of the modified carbon brush system was increased by 38%, the output power decreased by 78%. Combined with the results of cyclic voltammetry and the morphology analysis of the carbon brush electrode, it was concluded that the catechol violet adsorbed on the carbon fiber. The electrode structure of porosity, surface area and so on has a large shadow, resulting in the decrease of electricity production capacity. To sum up, in this paper, the sludge from lake bottom was used as the source of bacteria, stainless steel mesh, nickel foam and carbon brush were used to set up the dual chamber microbial fuel cell under natural conditions, and the negative electrode material was modified with catechol violet. In addition, the chemical oxygen demand (COD) of electrolyte in the negative electrode chamber of the battery was measured. It was shown that the highest degradation rate of COD was more than 85% during the operation of the unit, which showed the potential ability of purifying the wastewater.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM911.4
【參考文獻】
相關期刊論文 前7條
1 蘇佳;付玉彬;宰學榮;;海底微生物燃料電池陽極鄰苯二酚紫修飾及電化學性能[J];材料開發(fā)與應用;2011年04期
2 王力臻,項民,谷書華,王海軍;開路電壓及其影響因素[J];電池;1999年04期
3 覃奇賢;劉淑蘭;;電極的極化和極化曲線(Ⅱ)——極化曲線[J];電鍍與精飾;2008年07期
4 李國寶;楊秋霞;王雪琳;;NADH在環(huán)芬化合物修飾石墨電極上的電催化氧化[J];濟南大學學報(自然科學版);2008年01期
5 徐良芹;杜占合;馮加民;呂小麗;高慶宇;;硫代硫酸鹽在鉑電極上的電化學氧化行為[J];物理化學學報;2005年12期
6 劉東陽;程杰;潘軍青;文越華;曹高萍;楊裕生;;HBF_4溶液中全鉛液流電池[J];物理化學學報;2011年11期
7 朱憲,陳麗琴;鍵參數(shù)拓撲指數(shù)與常用元素的標準電極電位[J];應用化學;2000年01期
本文編號:1958971
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1958971.html