核電二回路熱力系統(tǒng)熱經(jīng)濟學分析及優(yōu)化
本文選題:核電二回路 + 結構理論 ; 參考:《哈爾濱工程大學》2014年碩士論文
【摘要】:核能作為解決能源需求的重要突破口,近年來在我國得到了迅速的發(fā)展,如何安全高效地利用核資源已成為我們關注的重要話題。隨著我國經(jīng)濟的快速發(fā)展,節(jié)能不經(jīng)濟的狀況已經(jīng)不適宜核電企業(yè)的生存及發(fā)展,熱經(jīng)濟學分析在熱力學分析的基礎上,將經(jīng)濟因素考慮到對機組的性能評價及分析中,能夠降低發(fā)電成本,提高機組運行的經(jīng)濟性,給企業(yè)及國家?guī)砭薮蟮慕?jīng)濟利益,對節(jié)約能源、改善環(huán)境也有顯著作用。本文以1000MW核電二回路熱力系統(tǒng)為研究對象,首先確定了額定工況下核電機_組的運行參數(shù)以及環(huán)境參數(shù),利用Matlab軟件及水和水蒸汽性質計算程序得到系統(tǒng)各狀態(tài)點的焓熵值及比(?),基于熱經(jīng)濟學結構理論建立了機組的生產(chǎn)結構模型,確定了各子系統(tǒng)的燃料-產(chǎn)品,對系統(tǒng)進行了(?)分析、(?)成本及熱經(jīng)濟學成本的分析計算。計算結果表明蒸汽發(fā)生器是系統(tǒng)中不可逆損失最大的設備,汽輪機各級組的(?)損失所占系統(tǒng)總(?)損失的比例也較大,是系統(tǒng)中用能的薄弱環(huán)節(jié),具有很好的節(jié)能潛力;不同設備的不可逆具有不同的成本,證明了(?)的不等價性;沿著熱力循環(huán)進行的方向,各設備的燃料及產(chǎn)品的單位(?)成本逐漸增加,從高壓加熱器至低壓加熱器的產(chǎn)品單位(?)成本逐漸增大。應用LIFO模式建立改進后的熱經(jīng)濟學生產(chǎn)結構模型,結合數(shù)學導數(shù)鏈式法則,對生產(chǎn)過程中及系統(tǒng)的終端產(chǎn)品成本形成過程進行了分析計算。計算結果與采用結構理論所得結果保持一致,且更加合理,所得發(fā)電成本為每度電$0.010,為核電機組終端產(chǎn)品的定價問題提供了重要的參考。應用遺傳算法對系統(tǒng)進行優(yōu)化分析,選取12個主要優(yōu)化參數(shù),將系統(tǒng)的單位熱經(jīng)濟學成本作為優(yōu)化的目標函數(shù),系統(tǒng)的主要設備蒸汽發(fā)生器及汽輪機組在優(yōu)化后總(?)損失降低了 1798kW,投資成本減少了$533744。這一分析結果對降低機組發(fā)電成本、提高機組經(jīng)濟性有一定的指導意義。優(yōu)化后系統(tǒng)的單位熱經(jīng)濟學成本值降低了 4.06%,系統(tǒng)設備投資成本減少了 0.38%,生產(chǎn)每度電的成本降低了 1.77%。對核電二回路熱力系統(tǒng)進行熱經(jīng)濟學分析及優(yōu)化設計,為找到降低核電機組熱經(jīng)濟成本的突破口,指出提高機組經(jīng)濟性的研究方向具有指導意義,同時也為二回路熱力系統(tǒng)提供了一套完整的評價和優(yōu)化平臺,對系統(tǒng)的節(jié)能降耗與優(yōu)化改造提供了科學依據(jù)及理論基礎。
[Abstract]:Nuclear energy, as an important breakthrough to solve the energy demand, has been developed rapidly in China in recent years. How to use nuclear resources safely and efficiently has become an important topic we pay attention to. With the rapid development of economy in our country, energy saving is not suitable for the survival and development of nuclear power enterprises. Based on the thermodynamic analysis, the economic factors are taken into account in the performance evaluation and analysis of the units. It can reduce the cost of power generation, improve the economy of unit operation, bring huge economic benefits to enterprises and countries, and also play a significant role in saving energy and improving environment. In this paper, the second loop thermal system of 1000MW nuclear power plant is taken as the research object. First, the operating parameters and environmental parameters of the nuclear motor _ group under rated working conditions are determined. The enthalpy entropy and ratio of each state point of the system are obtained by using the Matlab software and the calculation program of water and steam properties. Based on the thermoeconomics structure theory, the production structure model of the unit is established, the fuel-product of each subsystem is determined, and the system is carried out. Analysis) Analysis and calculation of cost and thermoeconomics cost. The calculation results show that the steam generator is the equipment with the largest irreversible loss in the system. Total loss of system) The proportion of loss is also large, which is the weak link of energy use in the system, and has a good energy saving potential; the irreversibility of different equipment has different costs, which proves that there is a lot of energy consumption in the system. In the direction of the thermal cycle, the units of fuel and products of each equipment) Increasing costs, from high-pressure heaters to low-pressure heaters The cost is gradually increasing. The improved thermoeconomics production structure model is established by using LIFO model, and the process of terminal product cost formation in production process and system is analyzed and calculated in combination with the mathematical derivative chain rule. The calculated results are consistent with the results obtained from the structural theory and are more reasonable. The resulting generation cost is 0.010 per kilowatt, which provides an important reference for the pricing of terminal products of nuclear power units. Genetic algorithm is used to optimize the system. Twelve main optimization parameters are selected. The unit thermoeconomic cost of the system is taken as the objective function of the optimization. The steam generator and steam turbine unit are the main equipment of the system after optimization. Losses were reduced by 1798kW and investment costs by 533744. The result of this analysis has certain guiding significance to reduce the generating cost and improve the unit economy. After optimization, the unit thermoeconomic cost of the system is reduced by 4.06, the investment cost of system equipment is reduced by 0.38, and the cost of producing electricity per degree is reduced by 1.7775. The thermoeconomic analysis and optimization design of the secondary loop thermal power system of nuclear power plant are carried out. In order to find a breakthrough to reduce the thermal economic cost of nuclear power unit, it is pointed out that the research direction of improving the unit economy is of guiding significance. At the same time, it also provides a complete evaluation and optimization platform for the secondary loop thermodynamic system, and provides the scientific basis and theoretical basis for the energy saving and optimization transformation of the system.
【學位授予單位】:哈爾濱工程大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM623
【參考文獻】
相關期刊論文 前10條
1 于淑梅;白蘭;史玉宣;董琪;;集成度對熱經(jīng)濟學成本的影響研究[J];汽輪機技術;2008年05期
2 楊旭紅;葉建華;錢虹;薛陽;;我國核電產(chǎn)業(yè)的現(xiàn)狀及發(fā)展初探[J];上海電力;2007年06期
3 張超;陳勝;劉黎明;鄭楚光;;電站熱力系統(tǒng)的熱經(jīng)濟學故障診斷[J];華中科技大學學報(自然科學版);2006年06期
4 李忠;;積極發(fā)展核電具有重大戰(zhàn)略意義[J];國防科技工業(yè);2006年03期
5 張超;劉黎明;陳勝;鄭楚光;;基于熱經(jīng)濟學結構理論的熱力系統(tǒng)性能評價[J];中國電機工程學報;2005年24期
6 程偉良,王清照,王加璇;300MW凝汽機組的熱經(jīng)濟學成本診斷[J];中國電機工程學報;2005年08期
7 王小伍,華賁;太陽能光-熱-電轉換利用系統(tǒng)的分析[J];熱力發(fā)電;2005年03期
8 彭啟珍,張樹芳,郭江龍;熱經(jīng)濟學成本分析中補充方程的合理構造[J];熱力發(fā)電;2003年10期
9 王清照,肖衛(wèi)杰,王加璇;運用熱經(jīng)濟學結構理論進行故障診斷的探討[J];中國電機工程學報;2003年09期
10 王清照,肖衛(wèi)杰,王加璇;熱經(jīng)濟學結構理論在故障診斷中的應用[J];華北電力大學學報;2003年05期
相關博士學位論文 前1條
1 張超;復雜能量系統(tǒng)的熱經(jīng)濟學分析與優(yōu)化[D];華中科技大學;2006年
相關碩士學位論文 前7條
1 扈鵬宇;小型船用蒸汽動力系統(tǒng)熱力學分析及優(yōu)化[D];哈爾濱工程大學;2012年
2 趙賀凱;燃氣—蒸汽聯(lián)合循環(huán)發(fā)電成本的熱經(jīng)濟學方法[D];華北電力大學;2012年
3 郭仲德;太陽能與火電廠回熱系統(tǒng)一體化的熱經(jīng)濟性研究[D];華北電力大學;2011年
4 李鐵峰;火電廠熱力系統(tǒng)性能評價[D];華北電力大學(北京);2009年
5 李新鵬;張電300MW機組回熱系統(tǒng)熱經(jīng)濟學診斷研究[D];華北電力大學(河北);2008年
6 周潔;集中供熱系統(tǒng)熱經(jīng)濟學優(yōu)化方法的研究[D];山東科技大學;2007年
7 周輝;火電機組回熱系統(tǒng)優(yōu)化和故障診斷[D];華北電力大學(河北);2006年
,本文編號:1954421
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1954421.html