基于PSCAD-MATLAB聯(lián)合調(diào)用的高壓直流控制系統(tǒng)參數(shù)優(yōu)化
發(fā)布時間:2018-05-24 02:48
本文選題:參數(shù)優(yōu)化 + 高壓直流 ; 參考:《高電壓技術(shù)》2014年08期
【摘要】:為解決高壓直流控制系統(tǒng)參數(shù)優(yōu)化問題,提出一種基于PSCAD-MATLAB聯(lián)合調(diào)用的參數(shù)優(yōu)化方法。闡述了聯(lián)合調(diào)用的可能性和基本原理,介紹了聯(lián)合調(diào)用實現(xiàn)優(yōu)化的基本流程。以CIGRE標(biāo)準(zhǔn)測試系統(tǒng)為研究模型,采用改進粒子群優(yōu)化算法優(yōu)化整流側(cè)定電流控制中PI控制器參數(shù)。經(jīng)過比對原參數(shù)、基于傳遞函數(shù)優(yōu)化方法的結(jié)果及基于基本粒子群算法的聯(lián)合調(diào)用優(yōu)化結(jié)果表明,聯(lián)合調(diào)用策略準(zhǔn)確復(fù)現(xiàn)了直流系統(tǒng)實際工作性能,依靠改進粒子群算法的全局搜索能力,有效實現(xiàn)了直流輸電控制系統(tǒng)的參數(shù)優(yōu)化,提升了直流輸電系統(tǒng)的瞬態(tài)和穩(wěn)態(tài)性能。聯(lián)合調(diào)用優(yōu)化控制參數(shù)方法的提出為直流輸電控制系統(tǒng)的各個參數(shù)的整定和優(yōu)化提供了重要的參考決策。
[Abstract]:In order to solve the parameter optimization problem of HVDC control system, a parameter optimization method based on joint call of PSCAD-MATLAB is proposed. This paper expounds the possibility and basic principle of joint call, and introduces the basic flow of realizing optimization of joint call. Using CIGRE standard test system as the research model, the parameters of Pi controller in rectifier side constant current control are optimized by improved particle swarm optimization (PSO) algorithm. After comparing the original parameters, the results based on the transfer function optimization method and the joint call optimization based on the basic particle swarm optimization algorithm show that the joint call strategy accurately reproduces the actual working performance of the DC system. Based on the improved particle swarm optimization (PSO) algorithm, the parameter optimization of HVDC control system is realized effectively, and the transient and steady performance of HVDC system is improved. The joint call of optimal control parameters provides an important reference decision for the tuning and optimization of each parameter of HVDC control system.
【作者單位】: 河海大學(xué)可再生能源發(fā)電技術(shù)教育部工程研究中心;中國電力科學(xué)研究院;
【基金】:國家自然科學(xué)基金(51277052;51107032;61104045) 國家電網(wǎng)公司大電網(wǎng)重大專項(SGCC-MPLG025-2012)~~
【分類號】:TM721.1
,
本文編號:1927389
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1927389.html
最近更新
教材專著