天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電力論文 >

鋰硫電池用具有選擇鋰離子通過(guò)性聚合物電解質(zhì)的研究

發(fā)布時(shí)間:2018-05-23 23:51

  本文選題:鋰硫電池 + 聚合物電解質(zhì) ; 參考:《國(guó)防科學(xué)技術(shù)大學(xué)》2014年博士論文


【摘要】:作為兼具高能量密度、低成本和環(huán)境友好等優(yōu)點(diǎn)的新型二次電池,鋰硫電池相關(guān)技術(shù)逐漸成為近年來(lái)化學(xué)電源領(lǐng)域的研究熱點(diǎn)。但是,由于鋰硫電池放電中間產(chǎn)物聚硫離子Sn2-(4≤n≤8)易溶于電解液,在濃度梯度作用下會(huì)逐漸向金屬鋰負(fù)極擴(kuò)散并與之反應(yīng),導(dǎo)致電池內(nèi)部產(chǎn)生飛梭現(xiàn)象;同時(shí),其放電最終產(chǎn)物L(fēng)i2S2或/和Li2S不溶于電解液,將沉積于金屬鋰負(fù)極表面,使負(fù)極表面腐蝕鈍化,最終造成鋰硫電池活性物質(zhì)利用率低、循環(huán)性能差、庫(kù)侖效率低等問(wèn)題,延緩了其實(shí)用化的步伐。為此,本論文提出使用具有選擇Li+通過(guò)性的聚合物電解質(zhì),以提高鋰硫電池的循環(huán)性能和庫(kù)侖效率。其中,具有選擇Li+通過(guò)性的聚合物電解質(zhì)的關(guān)鍵在于盡量提高聚合物電解質(zhì)的,使其在傳導(dǎo)Li+的同時(shí)抑制Sn2-(4≤n≤8)的通過(guò),避免Sn2-(4≤n≤8)與Li負(fù)極的直接接觸,從而達(dá)到提高電池硫利用率和循環(huán)性能的目的。本論文首先采用向聚合物電解質(zhì)中添加有機(jī)Lewis酸PEGn-B的方式提高聚合物電解質(zhì)的,然后直接使用接近于1的全氟鋰離子聚合物作為電解質(zhì)材料。系統(tǒng)開(kāi)展了含PEGn-B添加劑的CPL電解質(zhì)的性能及其改善鋰硫電池性能研究,以及全氟鋰離子聚合物電解質(zhì)的性能及其改善鋰硫電池性能的研究,并對(duì)全氟鋰離子聚合物電解質(zhì)具有選擇Li+通過(guò)性的機(jī)理進(jìn)行了系統(tǒng)研究。主要研究工作包括:研究了聚合體系中PEGn-B的-EO-鏈段長(zhǎng)度及添加比例對(duì)CPL電解質(zhì)的離子電導(dǎo)率和鋰離子遷移數(shù)的影響,確定了使CPL電解質(zhì)的離子電導(dǎo)率和鋰離子遷移數(shù)達(dá)最大時(shí)的聚合體系,并結(jié)合分子模擬計(jì)算,對(duì)CPL電解質(zhì)傳導(dǎo)Li+機(jī)理,以及PEGn-B提高CPL電解質(zhì)的、阻隔負(fù)離子通過(guò)的機(jī)理進(jìn)行了研究。結(jié)果表明,CPL電解質(zhì)膜的最佳聚合配比為PME400:PDE600:PEG3-B的質(zhì)量比為1:1:5,此時(shí)所得的CPL電解質(zhì)的離子電導(dǎo)率為3.3×10-4 S/cm,為0.54。含PEGn-B的CPL電解質(zhì)主要依靠CPL分子以及PEGn-B分子中-EO-鏈段的弛豫運(yùn)動(dòng)傳導(dǎo)Li+,而其提高并對(duì)負(fù)離子的傳輸具有阻隔性依靠PEGn-B中的中心原子B與電解質(zhì)中負(fù)離子之間的Lewis酸-堿作用。論文系統(tǒng)研究了使用含PEGn-B添加劑的CPL電解質(zhì)對(duì)鋰硫電池循環(huán)性能的影響以及該電池循環(huán)性能仍緩慢衰減的原因。Li|CPL|S電池以0.1C倍率恒流充放電時(shí),50次循環(huán)后容量保持率為87%,庫(kù)侖效率一直保持在90%以上,對(duì)比使用液態(tài)電解質(zhì)的鋰硫電池,其循環(huán)性能和庫(kù)侖效率得到了明顯改善。通過(guò)SEM、EDS、XPS等測(cè)試Li|CPL|S電池循環(huán)前后電解質(zhì)膜以及Li負(fù)極表面的形貌和組成變化的分析,表明受限于PEGn-B在CPL電解質(zhì)中的濃度和分布,CPL電解質(zhì)的小于1,Sn2-(4≤n≤8)在PEGn-B中B所形成的雙電層有效范圍之間的空隙空間中借助于-EO-鏈段的弛豫運(yùn)動(dòng)所產(chǎn)生的自由體積,最終穿過(guò)CPL電解質(zhì),造成使用CPL電解質(zhì)的鋰硫電池放電比容量緩慢衰減。論文制備了Li-PFSA型鋰離子聚合物電解質(zhì),系統(tǒng)研究了Li-PFSA電解質(zhì)對(duì)鋰硫電池循環(huán)性能和倍率性能的影響。研究結(jié)果表明,使用由Li+交換得到的Li-PFSA電解質(zhì),由于其高的(0.986),使用Li-PFSA電解質(zhì)的鋰硫電池的循環(huán)性能得到了改善,當(dāng)以0.1C倍率恒流充放電時(shí),100次循環(huán)后放電比容量保持率達(dá)78%,且?guī)靵鲂室惨恢狈(wěn)定于95%以上。驗(yàn)證了接近于1的全氟鋰離子聚合物電解質(zhì)改善鋰硫電池循環(huán)性能的可行性。但由于其較低的離子電導(dǎo)率(1.2×10-5 S/cm),使用Li-PFSA電解質(zhì)的鋰硫電池的倍率性能不佳,以1C倍率恒流充放電時(shí),放電比容量?jī)H130 m Ah/g左右。論文合成了Li-PFSD和Li-PFSI兩種新型全氟鋰離子聚合物,系統(tǒng)研究了溶液流延法成膜對(duì)這兩種離子聚合物結(jié)晶性能和電化學(xué)性能的影響。結(jié)果表明,隨著成膜溫度的升高,Li-PFSD電解質(zhì)膜和Li-PFSI電解質(zhì)膜的結(jié)晶度均減少,而結(jié)晶規(guī)整度均升高;隨著熱處理溫度的升高或熱處理時(shí)間的延長(zhǎng),Li-PFSD電解質(zhì)膜和Li-PFSI電解質(zhì)膜的結(jié)晶度均先減少后增加,而結(jié)晶規(guī)整度均一直升高。同時(shí),Li-PFSD電解質(zhì)膜和Li-PFSI電解質(zhì)膜的結(jié)晶度越低,所對(duì)應(yīng)電解質(zhì)的離子電導(dǎo)率越高。而Li-PFSD電解質(zhì)膜和Li-PFSI電解質(zhì)膜的結(jié)晶規(guī)整度越高,所對(duì)應(yīng)電解質(zhì)的越高。Li-PFSD電解質(zhì)膜的最佳成膜方式為180℃下成膜后再于220℃下熱處理4 h,此時(shí)Li-PFSD電解質(zhì)的離子電導(dǎo)率為2.12×10-4 S/cm,為0.96,Li-PFSI聚合物膜的最佳成膜方式為180℃下成膜后再于220℃下熱處理4 h,此時(shí)Li-PFSI電解質(zhì)的離子電導(dǎo)率為4.74×10-4 S/cm,為0.98。論文系統(tǒng)開(kāi)展了Li-PFSD電解質(zhì)和Li-PFSI電解質(zhì)對(duì)鋰硫電池循環(huán)性能和倍率性能的研究。研究表明,Li|Li-PFSD|S電池同時(shí)獲得了良好的循環(huán)性能和倍率性能,以0.1C倍率恒流充放電時(shí),Li|Li-PFSD|S電池100次循環(huán)后放電比容量保持率達(dá)82.9%,且?guī)靵鲂室恢狈(wěn)定于97%以上;以1C倍率恒流充放電時(shí),其放電比容量穩(wěn)定在530 m Ah/g左右。Li|Li-PFSI|S電池也獲得良好的循環(huán)性能和倍率性能,當(dāng)以0.1C倍率恒流充放電時(shí),100次循環(huán)后放電比容量保持率達(dá)88.1%,且?guī)靵鲂室恢狈(wěn)定于97%以上;以1C倍率恒流充放電時(shí),放電比容量穩(wěn)定于700 m Ah/g左右,以2C倍率恒流充放電時(shí),放電比容量穩(wěn)定于620 m Ah/g左右。對(duì)Li|Li-PFSI|S電池以0.2C倍率進(jìn)行長(zhǎng)循環(huán)恒流充放電,經(jīng)210次循環(huán)后其放電比容量保持率為80%,500次循環(huán)后其放電比容量的保持率仍達(dá)68%。論文分析了使用全氟鋰離子聚合物電解質(zhì)提高鋰硫電池循環(huán)性能和庫(kù)侖效率的原因。通過(guò)對(duì)循環(huán)過(guò)程中鋰硫電池各界面的阻抗變化情況,以及循環(huán)前后正、負(fù)極的形貌變化以及電解質(zhì)膜的形貌和性能變化的分析,表明使用全氟鋰離子聚合物電解質(zhì)的鋰硫電池循環(huán)性能和庫(kù)侖效率的提高的原因是全氟鋰離子聚合物電解質(zhì)具有選擇Li+通過(guò)性,能有效抑制Sn2-(4≤n≤8)通過(guò),從而減少了電池中與Li負(fù)極反應(yīng)所消耗的活性物質(zhì)以及飛梭現(xiàn)象的產(chǎn)生。論文分析了三種不同的全氟鋰離子聚合物電解質(zhì)膜在不同有機(jī)溶劑中吸液率以及所對(duì)應(yīng)電解質(zhì)的離子電導(dǎo)率的變化,研究了溶劑性質(zhì)以及鋰離子聚合物的末端離子基團(tuán)的結(jié)構(gòu)對(duì)電解質(zhì)離子電導(dǎo)率的影響,以及全氟鋰離子聚合物膜的靜電效應(yīng)和微結(jié)構(gòu)對(duì)電解質(zhì)的影響。研究表明,當(dāng)全氟鋰離子聚合物不變時(shí),所形成的聚合物膜的結(jié)晶度越小,所吸脹的有機(jī)溶劑的介電常數(shù)和施主數(shù)越大、黏度越小,該電解質(zhì)的離子電導(dǎo)率越高;而對(duì)于不同的全氟鋰離子聚合物,聚合物末端離子基團(tuán)的離域趨勢(shì)越大,在相同條件下該電解質(zhì)離子電導(dǎo)率越高。
[Abstract]:As a new type of two battery with the advantages of high energy density, low cost and friendly environment, the related technology of lithium sulfur battery has gradually become a hot spot in the field of chemical power supply in recent years. However, as the intermediate product of polysulfide ion Sn2- (4 < < < 8) of the lithium sulfur battery is easily dissolved in the electrosolution, it will gradually be negative to the metal lithium under the concentration gradient. At the same time, the final product Li2S2 or / and / and Li2S insoluble in the electrolyte will be deposited on the surface of the metal lithium anode, and the negative electrode surface is corroded and passivated, which eventually causes the low utilization of the active material of the lithium sulfur battery, the poor circulation performance and the low coulomb efficiency. In this paper, we propose to use the polymer electrolyte with the choice of Li+ to improve the cycle performance and coulomb efficiency of the lithium sulfur battery. Among them, the key of the polymer electrolyte with the choice of the Li+ passing ability is to improve the polymer electrolyte as much as possible to prevent the passing of Sn2- (4 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < 4 >). The direct contact between the Sn2- (4 < < n < < < < 8) and the negative electrode of Li can improve the sulfur utilization and cycle performance of the battery. In this paper, the polymer electrolyte is improved by adding organic Lewis acid PEGn-B into the polymer electrolyte, and then directly using the perfluoro lithium ion polymer near to 1 as the electrolyte material. The properties of the CPL electrolyte containing PEGn-B additive and the improvement of the performance of the lithium sulfur battery, the performance of the perfluoro lithium ion polymer electrolyte and the improvement of the performance of the lithium sulfur battery were studied. The mechanism of the perfluoro lithium ion polymer electrolyte has been studied systematically. The main research work includes: The effect of the length and proportion of -EO- segment of PEGn-B on the ionic conductivity and lithium ion migration number of CPL electrolyte is investigated. The polymerization system which makes the ionic conductivity and the lithium ion migration number of the CPL electrolyte is maximum is determined. The mechanism of Li+ conduction to the CPL electrolyte and the PEGn-B to improve the CPL electricity are also determined by the molecular simulation calculation. The results show that the mass ratio of the optimum polymerization ratio of CPL electrolyte membrane to PME400:PDE600:PEG3-B is 1:1:5, and the ionic conductivity of the CPL electrolyte is 3.3 x 10-4 S/cm at this time, and the CPL electrolyte containing PEGn-B in 0.54. is mainly dependent on the CPL molecule and -EO- chain in the PEGn-B molecule. The relaxation motion conduction Li+, and its enhancement and the transmission of negative ions is dependent on the Lewis acid alkali effect between the central atom B in PEGn-B and the negative ions in the electrolyte. This paper systematically studies the effect of CPL electrolyte containing PEGn-B additive on the cycle performance of the lithium sulfur battery and the slow attenuation of the cycle performance of the battery. The capacity retention rate of the.Li|CPL|S battery was 87% after 50 cycles, and the coulomb efficiency remained above 90%. The cycle performance and coulomb efficiency of the battery were improved obviously. The electrolyte membrane and Li negative electrode before and after the Li|CPL|S battery cycle were tested by SEM, EDS, XPS and so on. The analysis of the surface morphology and composition changes shows that the concentration and distribution of the PEGn-B in the CPL electrolyte is limited, and the CPL electrolyte is less than 1, and the Sn2- (4 < < n < 8) is in the void space between the effective range of the double layer of the B formed in PEGn-B, and the free volume produced by the relaxation motion of the -EO- chain section is finally passed through the CPL electrolyte, resulting in the result. The discharge of lithium sulfur battery with CPL electrolyte attenuates slowly. A Li-PFSA type lithium ion polymer electrolyte is prepared in this paper. The influence of Li-PFSA electrolyte on the cycle performance and ratio performance of lithium sulfur battery is systematically studied. The results show that the use of Li-PFSA electrosolution obtained by Li+ exchange is high (0.986), using Li-PFSA electrolysis The cycle performance of the lithium sulfur battery is improved. The discharge ratio of the discharge is 78% and the coulomb efficiency is stable over 95% when the discharge of the 0.1C ratio constant current is 78%, and the coulomb efficiency is more than 95%. The feasibility of improving the cycle performance of the lithium sulfur battery is verified. The conductivity (1.2 x 10-5 S/cm), the ratio performance of the lithium sulfur battery using Li-PFSA electrolyte is not good. The discharge specific capacity is only about 130 m Ah/g when charging and discharging at the constant current of 1C multiplier. The paper synthesizes two new types of perfluoro lithium ion polymers with Li-PFSD and Li-PFSI. The crystallization properties of these two kinds of ionic polymers are systematically studied. The results show that the crystallinity of the Li-PFSD electrolyte membrane and the Li-PFSI electrolyte membrane decreases with the increase of the film forming temperature. The crystallinity of the Li-PFSD electrolyte membrane and the Li-PFSI electrolyte membrane increases with the increase of heat treatment temperature or the prolongation of the heat treatment time. At the same time, the lower the crystallinity of the Li-PFSD electrolyte membrane and the Li-PFSI electrolyte membrane, the higher the ionic conductivity of the corresponding electrolyte, the higher the crystallinity of the Li-PFSD electrolyte membrane and the Li-PFSI electrolyte membrane, the best film forming way of the higher.Li-PFSD electrolyte membrane of the corresponding electrolyte is the film forming at 180 degrees C and then after the formation of the film. At 220 C, the heat treatment was 4 h, at this time the ionic conductivity of the Li-PFSD electrolyte was 2.12 x 10-4 S/cm, which was 0.96. The best film forming method of the Li-PFSI polymer film was at 180 C and then at 220 C at 4 h, and the ionic conductivity of the Li-PFSI electrolyte was 4.74 * 10-4 S/cm, and Li-PFSD electrolyte and Li-PFSI electrolysis were carried out for 0.98. paper system. The study of the cycle performance and ratio performance of the lithium sulfur battery shows that the Li|Li-PFSD|S battery has good cycle performance and multiple performance. The discharge ratio of the Li|Li-PFSD|S battery after 100 cycles is 82.9%, and the coulomb efficiency has been stable over 97% when the 0.1C rate constant current charging and discharging. The discharge ratio is stable at about 530 m Ah/g and the.Li|Li-PFSI|S battery has good cycle performance and multiple performance. When charging and discharging with 0.1C constant current, the discharge ratio of discharge is 88.1%, and the coulomb efficiency is stable over 97%. The discharge capacity is stable at 700 m A with 1C multiple constant current charging and discharging. At about h/g, the discharge capacity is stable at about 620 m Ah/g with the constant current of 2C multiplying constant current. The Li|Li-PFSI|S battery is charged with a long cycle and constant current with 0.2C multiplying, after 210 cycles the discharge ratio of the discharge ratio is 80%, and the retention rate of the discharge specific capacity after the 500 cycle is still up to 68%. paper analysis of the use of the perfluoro lithium ion polymer. The reasons for the improvement of the cycle performance and coulomb efficiency of lithium sulfur batteries by electrolytes are analyzed. The cyclic properties of lithium sulfur batteries using perfluoro lithium ion polymer electrolytes are shown by the analysis of the changes in the impedance of the lithium sulfur batteries and the changes in the morphology and the morphology and properties of the electrolyte membrane. The reason for the improvement of the coulomb efficiency is that the perfluoro lithium ion polymer electrolyte has the selectivity of Li+ and can effectively inhibit the passing of Sn2- (4 < < n < 8), thus reducing the production of active substances and the shuttle phenomenon in the battery with Li negative electrode reaction. In this paper, three different kinds of perfluoro lithium ion polymer electrolyte membranes are analyzed in different ways. The effect of the properties of the solvent and the structure of the terminal ionic group on the ionic conductivity of the lithium ion polymer, as well as the electrostatic effect of the perfluoro lithium polymer film and the influence of the microstructure on the electrolyte, are studied. The smaller the crystallinity of the polymer film is, the smaller the crystallinity of the polymer film, the greater the dielectric constant and the donor number of the dilated organic solvents, the smaller the viscosity, the higher the ionic conductivity of the electrolyte, and the greater the ionization trend of the polymer terminal ionic groups for different perfluorium-ion polymers, the electrolyte is separated under the same conditions. The higher the electrical conductivity of the sub.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM912

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 艾新平,袁利霞,鄢海軍,楊漢西;復(fù)合型聚合物電解質(zhì)膜的研究[J];電池;2002年S1期

2 王占良,唐致遠(yuǎn);一種復(fù)合聚合物電解質(zhì)的性質(zhì)表征[J];電源技術(shù);2003年S1期

3 杜洪彥,程琥,楊勇,林祖賡;可充鋰電池復(fù)合聚合物電解質(zhì)研究新進(jìn)展[J];電源技術(shù);2003年S1期

4 李朝暉,蘇光耀,高德淑,王霞瑜,李小平;硅鎢酸鋰在聚合物電解質(zhì)中的應(yīng)用[J];電源技術(shù);2004年12期

5 蔣晶;蘇光耀;;離子液體聚合物電解質(zhì)的研究進(jìn)展[J];電池;2005年06期

6 劉玉文,張勇,李小龍,顧琪萍,張翠芬,黃玉東;增塑聚合物電解質(zhì)電化學(xué)性能[J];電化學(xué);2005年01期

7 ;旭化成燃料電池高耐熱氟類(lèi)聚合物電解質(zhì)[J];有機(jī)硅氟資訊;2005年10期

8 楊金鑫;孫方民;尹艷紅;岳紅云;楊偉光;楊書(shū)廷;;新型復(fù)合聚合物電解質(zhì)膜的制備及性能[J];電池;2006年02期

9 盧敏;張玉清;蘆雷鳴;;離子液體聚合物電解質(zhì)在染料敏化太陽(yáng)能電池中的應(yīng)用[J];化工之友;2007年17期

10 張記甫;桑商斌;伍秋美;;堿性聚合物電解質(zhì)的研究進(jìn)展[J];電池;2007年05期

相關(guān)會(huì)議論文 前10條

1 譚海軍;王鋼;潘春躍;;無(wú)機(jī)粒子摻雜含硫聚合物電解質(zhì)的制備與性能[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年

2 范麗珍;趙淑金;南策文;;PEO-LiClO_4-SiO_2復(fù)合型聚合物電解質(zhì)[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年

3 徐先華;潘春躍;馮慶;;PEO/LiClO_4/TiO_2復(fù)合聚合物電解質(zhì)的制備及電化學(xué)性能研究[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年

4 陳作鋒;姜艷霞;孫世剛;;分子篩復(fù)合微孔型聚合物電解質(zhì)及其與負(fù)極相容性研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

5 李志明;魏建功;單峰;鄭震;王新靈;;多孔氟硅膠表面沉積納米SiO_2粒子新型聚合物電解質(zhì)[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年

6 徐先華;潘春躍;馮慶;;PEO/LiClO_4/TiO_2復(fù)合聚合物電解質(zhì)的導(dǎo)電性能研究[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集稀土專(zhuān)輯[C];2004年

7 梁亮;王瑋;吳惠康;房晶瑞;鮑玉勝;;聚合物電解質(zhì)的研究與進(jìn)展[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(4)[C];2007年

8 金蘭英;姜艷霞;廖宏剛;孫世剛;;離子液體增塑的聚合物電解質(zhì)紅外透射光譜研究[A];第十五屆全國(guó)分子光譜學(xué)術(shù)報(bào)告會(huì)論文集[C];2008年

9 戶(hù)獻(xiàn)雷;容敏智;阮文紅;章明秋;;本征型聚合物電解質(zhì)的制備與表征[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第18分會(huì)場(chǎng)摘要集[C];2012年

10 黃興蘭;楊克潤(rùn);譚斌;馬果;王公應(yīng);鄧正華;;一種特殊球狀結(jié)構(gòu)的聚合物電解質(zhì)薄膜的制備方法[A];第29屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2011年

相關(guān)重要報(bào)紙文章 前1條

1 ;成都聚合物鋰離子電池隔膜項(xiàng)目通過(guò)鑒定[N];今日信息報(bào);2004年

相關(guān)博士學(xué)位論文 前10條

1 金朝慶;鋰硫電池用具有選擇鋰離子通過(guò)性聚合物電解質(zhì)的研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年

2 凌志軍;鋰離子電池用磷酸酯型固體聚合物電解質(zhì)研究[D];清華大學(xué);2007年

3 王立仕;鋰離子電池納米復(fù)合聚合物電解質(zhì)的制備及性能研究[D];北京化工大學(xué);2009年

4 王占良;鋰離子電池用聚合物電解質(zhì)應(yīng)用基礎(chǔ)研究[D];天津大學(xué);2003年

5 李雪莉;聚合物電解質(zhì)隔膜及鋰負(fù)極性能研究[D];復(fù)旦大學(xué);2005年

6 高昆;微孔聚合物電解質(zhì)的制備及其增強(qiáng)改性的研究[D];哈爾濱工業(yè)大學(xué);2007年

7 杜洪彥;二次鋰電池納米復(fù)合聚合物電解質(zhì)的制備、表征及其離子導(dǎo)電機(jī)理研究[D];廈門(mén)大學(xué);2004年

8 張鵬;新型鋰離子電池聚合物電解質(zhì)制備及性能研究[D];復(fù)旦大學(xué);2010年

9 程琥;鋰二次電池聚合物電解質(zhì)的制備、表征及其相關(guān)界面性質(zhì)研究[D];廈門(mén)大學(xué);2007年

10 高楊文;聚氧化乙烯/堿金屬鹽聚合物電解質(zhì)結(jié)構(gòu)與分子動(dòng)力學(xué)的固體高分辨核磁共振研究[D];華東師范大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 金蘭英;離子液體聚合物電解質(zhì)的制備及其性能研究[D];廈門(mén)大學(xué);2008年

2 徐晨;鋰離子電池凝膠聚合物電解質(zhì)的改性研究[D];四川師范大學(xué);2015年

3 朱昌寶;離子液體復(fù)合聚合物電解質(zhì)的制備和電化學(xué)性能研究[D];廈門(mén)大學(xué);2008年

4 黃雪原;凝膠型離子液體/聚合物電解質(zhì)的合成和性能研究[D];湖南師范大學(xué);2009年

5 高安安;含硫固態(tài)聚合物電解質(zhì)的合成、結(jié)構(gòu)表征及導(dǎo)電性能研究[D];中南大學(xué);2009年

6 高祥虎;聚偏氟乙烯基微孔聚合物電解質(zhì)的制備及電化學(xué)性能研究[D];西北師范大學(xué);2009年

7 劉毅;金屬空氣燃料電池聚合物電解質(zhì)的合成[D];哈爾濱理工大學(xué);2010年

8 樸金丹;聚合物電解質(zhì)的制備及應(yīng)用研究[D];武漢大學(xué);2005年

9 李月麗;堿性固體聚合物電解質(zhì)制備及電性能的研究[D];昆明理工大學(xué);2006年

10 蔣晶;凝膠型離子液體/聚合物電解質(zhì)的制備及其性能研究[D];湘潭大學(xué);2006年



本文編號(hào):1926879

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1926879.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)65900***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com