小型化頻譜監(jiān)測(cè)設(shè)備前端組件的設(shè)計(jì)與實(shí)現(xiàn)
發(fā)布時(shí)間:2018-05-22 07:13
本文選題:頻譜監(jiān)測(cè) + 射頻 ; 參考:《電子科技大學(xué)》2014年碩士論文
【摘要】:隨著通訊事業(yè)的快速發(fā)展,通信設(shè)備的種類和數(shù)量急速增長(zhǎng),導(dǎo)致可供分配的頻譜資源越來稀缺。頻譜擁擠和頻段的非法占用日益成為影響無(wú)線通信的重大因素,無(wú)線電監(jiān)管部門正面臨著越來越復(fù)雜和嚴(yán)峻的頻譜監(jiān)測(cè)和管理問題。無(wú)線電頻譜監(jiān)測(cè)是頻譜監(jiān)管的主要環(huán)節(jié),頻譜監(jiān)測(cè)成為未來頻率分配規(guī)劃、無(wú)線發(fā)射技術(shù)特性測(cè)量、無(wú)線信號(hào)發(fā)射源查尋等領(lǐng)域必不可少的手段。本論文根據(jù)項(xiàng)目需求,設(shè)計(jì)一款監(jiān)測(cè)頻譜范圍覆蓋9kHz~8GHz,實(shí)時(shí)分析帶寬10MHz的高性能、高靈敏度、小型化、低功耗的頻譜監(jiān)測(cè)設(shè)備前端組件,此監(jiān)測(cè)設(shè)備同時(shí)具備頻譜監(jiān)測(cè)和數(shù)字調(diào)制信號(hào)分析等功能。本文采取目前常用的超外差接收機(jī)架構(gòu),摒棄臺(tái)式監(jiān)測(cè)設(shè)備前端組件采用的開關(guān)濾波器組或YIG可調(diào)濾波器做預(yù)選濾波的實(shí)現(xiàn)方案,采用第一中頻頻率為9.864GHz的高中頻的變頻方案實(shí)現(xiàn)。待測(cè)射頻信號(hào)經(jīng)過一次上變頻和兩次下變頻之后,降頻到ADC可處理的中心頻率為64MHz,帶寬10MHz的中頻信號(hào),并通過濾波和信號(hào)調(diào)理等手段將變頻過程中引入的雜散信號(hào)濾除,保證監(jiān)測(cè)設(shè)備的高靈敏度、大動(dòng)態(tài)范圍等指標(biāo)要求。本文首先提出了監(jiān)測(cè)設(shè)備射頻前端的設(shè)計(jì)指標(biāo),并對(duì)噪聲系數(shù)、靈敏度、P1dB功率壓縮點(diǎn)、雜散響應(yīng)、剩余響應(yīng)等關(guān)鍵指標(biāo)進(jìn)行分析,指出這些關(guān)鍵指標(biāo)對(duì)監(jiān)測(cè)設(shè)備系統(tǒng)的影響并提出影響指標(biāo)的各項(xiàng)因素。其次對(duì)監(jiān)測(cè)設(shè)備射頻前端進(jìn)行系統(tǒng)級(jí)設(shè)計(jì),包括系統(tǒng)架構(gòu)選擇、變頻方案設(shè)計(jì)、雜散分析、鏈路增益分配和噪聲分析等,并運(yùn)用ADS軟件做系統(tǒng)級(jí)仿真分析,提出一種可行的監(jiān)測(cè)設(shè)備射頻前端系統(tǒng)方案。然后對(duì)監(jiān)測(cè)設(shè)備射頻前端系統(tǒng)進(jìn)行模塊化分解,完成程控衰減器單元、前置低噪聲放大器單元、三級(jí)變頻單元等單元電路的設(shè)計(jì)、實(shí)現(xiàn)和測(cè)試工作。其中變頻單元分為前置鏡像濾波器電路、混頻電路、中頻濾波器電路和中頻信號(hào)調(diào)理電路等部分,濾波器采用微帶濾波器、聲表面濾波器和LC濾波器等小型化設(shè)計(jì)方案,信號(hào)調(diào)理電路采取低功耗方案設(shè)計(jì)。最后將各單元電路集成為監(jiān)測(cè)設(shè)備的射頻前端系統(tǒng),對(duì)系統(tǒng)各項(xiàng)指標(biāo)用標(biāo)準(zhǔn)測(cè)試方案進(jìn)行測(cè)試并進(jìn)行結(jié)果分析。
[Abstract]:With the rapid development of communication industry, the types and quantity of communication equipment are increasing rapidly, which leads to the scarcity of spectrum resources available for allocation. Spectrum congestion and illegal occupation of frequency band are increasingly becoming a major factor affecting wireless communication. Radio regulatory authorities are facing more and more complex and severe spectrum monitoring and management problems. Radio spectrum monitoring is the main link of spectrum monitoring. Spectrum monitoring has become an indispensable means in the future frequency distribution planning, wireless transmission technology characteristics measurement, wireless signal emission source search and other fields. According to the requirements of the project, this paper designs a front-end component of the spectrum monitoring equipment which covers 9kHz, 8GHz, real-time analysis bandwidth 10MHz with high performance, high sensitivity, miniaturization and low power consumption. The monitoring equipment has the functions of spectrum monitoring and digital modulation signal analysis. In this paper, the current superheterodyne receiver architecture is adopted, and the implementation scheme of switching filter bank or YIG tunable filter used in front-end component of desktop monitoring equipment as pre-selected filter is abandoned. The first intermediate frequency is 9.864GHz and the high frequency conversion scheme is adopted. After one up-conversion and two downconversion, the RF signal to be tested can be reduced to the center frequency of 64MHz, the intermediate frequency signal of the bandwidth 10MHz is reduced to the center frequency, and the stray signal introduced in the frequency conversion process is filtered by filtering and signal conditioning, etc. Ensure high sensitivity and wide dynamic range of monitoring equipment. In this paper, the design index of RF front-end of monitoring equipment is put forward, and the key indexes, such as noise coefficient, sensitivity of P1dB power compression point, stray response and residual response, are analyzed. The influence of these key indexes on the monitoring equipment system is pointed out and the factors affecting the indicators are put forward. Secondly, the RF front-end of monitoring equipment is designed at system level, including system architecture selection, frequency conversion scheme design, stray analysis, link gain allocation and noise analysis, and system level simulation analysis is done by using ADS software. A feasible RF front end system for monitoring equipment is proposed. Then the module decomposition of the RF front-end system of the monitoring equipment is carried out to complete the design, implementation and testing of the programmable attenuator unit, the preposition low noise amplifier unit, the three-stage frequency conversion unit and so on. The frequency conversion unit is divided into three parts: premirror filter circuit, mixing circuit, intermediate frequency filter circuit and if signal conditioning circuit. The filter adopts miniaturized design schemes such as microstrip filter, acoustic surface filter and LC filter. The signal conditioning circuit is designed with low power consumption. Finally, the unit circuits are integrated into the RF front-end system of the monitoring equipment, and the system indexes are tested by the standard test scheme and the results are analyzed.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM935.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 薄春衛(wèi);;寬帶低噪聲混頻器的設(shè)計(jì)[J];電子技術(shù);2012年06期
2 王吉濱,孟憲德,袁業(yè)術(shù);提高接收系統(tǒng)線性度的研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2002年04期
,本文編號(hào):1920998
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1920998.html
最近更新
教材專著