考慮臺(tái)風(fēng)天氣影響的風(fēng)電可靠性建模研究
本文選題:臺(tái)風(fēng) + 風(fēng)電��; 參考:《廣西大學(xué)》2014年碩士論文
【摘要】:近年來(lái),我國(guó)逐步開(kāi)始在沿海地區(qū)建設(shè)風(fēng)電場(chǎng)。臺(tái)風(fēng)天氣作為一種特殊的氣象情況,可能對(duì)沿海風(fēng)電場(chǎng)造成嚴(yán)重影響。由于臺(tái)風(fēng)瞬時(shí)風(fēng)速往往較高,甚至達(dá)到50m/s以上,可能給風(fēng)電機(jī)組結(jié)構(gòu)施加巨大的風(fēng)載荷效應(yīng),造成葉片損壞等問(wèn)題。同時(shí),臺(tái)風(fēng)風(fēng)速變化波動(dòng)大,可能造成風(fēng)電機(jī)組突然停機(jī),’系統(tǒng)突然失去大量電源。此外,臺(tái)風(fēng)可能造成風(fēng)吹異物至導(dǎo)線或樹(shù)枝倒伏于線路上,造成高壓輸電線路的跳閘或故障。因此,有必要量化分析臺(tái)風(fēng)這種極端天氣對(duì)風(fēng)電場(chǎng)輸出功率的影響,從而從系統(tǒng)角度,分析其對(duì)系統(tǒng)運(yùn)行可靠性的影響大小。 本文首先采用Batts風(fēng)場(chǎng)模型、YanMeng風(fēng)場(chǎng)模型以及Shapiro等幾種不同的風(fēng)場(chǎng)模型對(duì)歷史臺(tái)風(fēng)Wayne及黑格比的臺(tái)風(fēng)風(fēng)速進(jìn)行模擬,選擇出計(jì)算速度較快、精度較適宜的臺(tái)風(fēng)風(fēng)場(chǎng)模型。根據(jù)本文的分析可知,YanMeng風(fēng)場(chǎng)模型的精度較高,計(jì)算速度較適宜,可采用該模型對(duì)臺(tái)風(fēng)風(fēng)速進(jìn)行模擬與復(fù)現(xiàn)。在此基礎(chǔ)上,根據(jù)《西北太平洋熱帶氣旋最佳路徑數(shù)據(jù)集》中的歷史臺(tái)風(fēng)記錄,以廣東某實(shí)際風(fēng)電場(chǎng)為模擬點(diǎn),擬合出該模擬點(diǎn)的臺(tái)風(fēng)參數(shù)分布模型并形成不同的臺(tái)風(fēng)風(fēng)速模擬序列。通過(guò)對(duì)該模擬點(diǎn)分析可知,約有65-70%的熱帶氣旋可能促使風(fēng)電場(chǎng)發(fā)電量增加,而有30-35%的臺(tái)風(fēng)可能造成風(fēng)電機(jī)組的大規(guī)模脫網(wǎng)事件,建議風(fēng)電場(chǎng)控制人員及時(shí)采取相應(yīng)的控制策略。結(jié)合該風(fēng)電場(chǎng)風(fēng)機(jī)的實(shí)際布局情況,利用風(fēng)功率曲線求解出臺(tái)風(fēng)天氣下各風(fēng)電機(jī)組的輸出功率。 最后,以可靠性測(cè)試系統(tǒng)RTS79為算例,研究臺(tái)風(fēng)條件下電力系統(tǒng)的短期可靠性,為臺(tái)風(fēng)天氣下電力系統(tǒng)的調(diào)度、風(fēng)險(xiǎn)控制進(jìn)行數(shù)據(jù)依托。分析結(jié)果表明:臺(tái)風(fēng)天氣將造成系統(tǒng)短期可靠性水平大幅度降低,即使在某些時(shí)段,風(fēng)電場(chǎng)的發(fā)電量增加促使系統(tǒng)可靠性略有提升,但是臺(tái)風(fēng)造成線路故障率成倍增加。當(dāng)臺(tái)風(fēng)風(fēng)速處于7級(jí)風(fēng)速以上時(shí),將導(dǎo)致系統(tǒng)可靠性降低,而但臺(tái)風(fēng)風(fēng)速處于6級(jí)風(fēng)速及以下時(shí),系統(tǒng)可靠性水平略有提升。此外,在同等風(fēng)速條件下,隨著風(fēng)電裝機(jī)容量越大,系統(tǒng)切負(fù)荷概率越低。當(dāng)風(fēng)電滲透率為0.9032%,系統(tǒng)切負(fù)荷概率降低0.4215%;當(dāng)風(fēng)電滲透率為8.1284%,系統(tǒng)切負(fù)荷概率降低1.6156%。即當(dāng)風(fēng)電滲透率位于0.9032%~8.1284%之間時(shí),風(fēng)電滲透率越大,系統(tǒng)可靠性越高。而當(dāng)風(fēng)電滲透率達(dá)9.032%時(shí),在單個(gè)節(jié)點(diǎn)接入容量超出線路傳輸容量限制使得系統(tǒng)潮流發(fā)生變化,系統(tǒng)可靠性降低。當(dāng)系統(tǒng)中的發(fā)電備用逐漸降低,系統(tǒng)的可靠性水平也逐漸降低。當(dāng)系統(tǒng)固有發(fā)電容量不足時(shí),系統(tǒng)有較大概率維持在原有系統(tǒng)狀態(tài)下,從而使得系統(tǒng)切負(fù)荷概率近似為1。
[Abstract]:In recent years, China has gradually begun to build wind farms in coastal areas. Typhoon weather, as a special meteorological condition, may have a serious impact on coastal wind farms. Because the instantaneous wind speed of typhoon is usually higher, even more than 50m/s, the wind load effect may be exerted on the structure of wind turbine and the blade damage may be caused. At the same time, the typhoon wind speed fluctuates greatly, which may result in the sudden shutdown of wind turbine unit and the sudden loss of a large amount of power supply. In addition, typhoon may cause wind blowing foreign bodies to the wire or branches on the line, causing high voltage transmission line tripping or failure. Therefore, it is necessary to quantitatively analyze the influence of typhoon, the extreme weather, on the output power of wind farm, so as to analyze the influence of typhoon on the reliability of the system from the point of view of the system. In this paper, Batts wind field model, Yanmeng wind field model and Shapiro wind field model are used to simulate typhoon wind speed of historical typhoon Wayne and Hagrid ratio, and typhoon wind field model with faster calculation speed and more suitable precision is selected. According to the analysis of this paper, it can be concluded that the model of Yanmeng wind field is more accurate and the speed of calculation is more suitable. The model can be used to simulate and reproduce the wind speed of typhoon. On this basis, according to the historical typhoon records in the data set of the best track of tropical cyclones in the Northwest Pacific Ocean, a real wind farm in Guangdong Province is taken as the simulation point. The typhoon parameter distribution model of the simulated point is fitted and different typhoon wind speed simulation sequences are formed. Through the analysis of the simulation point, it can be seen that about 65-70% of tropical cyclones may promote the increase of wind farm power generation, while 30-35% of typhoons may cause large-scale decoupling of wind turbines. It is suggested that wind farm controllers should take corresponding control strategies in time. Combined with the actual layout of the wind farm fan, the output power of each wind turbine under typhoon weather is solved by using the wind power curve. Finally, taking the reliability test system (RTS79) as an example, the short-term reliability of power system under typhoon condition is studied, which is the data support for dispatching and risk control of power system under typhoon weather. The results show that the short-term reliability level of the system will be greatly reduced due to typhoon weather. Even in some periods, the system reliability will be slightly improved by the increase of power generation from wind farms, but the fault rate of the system will increase exponentially due to typhoon. When the typhoon wind speed is above the magnitude 7 wind speed, the reliability of the system will decrease, but when the typhoon wind speed is below the magnitude 6 wind speed, the reliability level of the system will be slightly improved. In addition, under the same wind speed, with the increase of the installed capacity of wind power, the probability of load shedding of the system is lower. When the wind power permeability is 0.9032, the system load cutting probability is reduced by 0.4215. when the wind power permeability is 8.1284, the system load shedding probability is reduced by 1.6156.When the wind power permeability is 8.1284, the system shedding probability is reduced. That is, when the wind power permeability is between 0.9032% and 8.1284%, the greater the wind power permeability is, the higher the system reliability is. When the permeability of wind power reaches 9.032, the power flow of the system changes and the reliability of the system decreases when the access capacity of a single node exceeds the limit of transmission capacity of the transmission line. When the power generation reserve in the system is gradually reduced, the reliability level of the system is gradually reduced. When the inherent generating capacity of the system is insufficient, the system has a high probability of being maintained in the original system state, which makes the load cutting probability of the system approximate to 1.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM732
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李玉敦;謝開(kāi)貴;;含多個(gè)風(fēng)電場(chǎng)的電力系統(tǒng)可靠性評(píng)估[J];電力科學(xué)與技術(shù)學(xué)報(bào);2011年01期
2 劉海濤;程林;孫元章;王鵬;;基于實(shí)時(shí)運(yùn)行條件的元件停運(yùn)因素分析與停運(yùn)率建模[J];電力系統(tǒng)自動(dòng)化;2007年07期
3 劉海濤;孫元章;程林;王鵬;;計(jì)及多狀態(tài)元件模型的系統(tǒng)狀態(tài)快速排序技術(shù)[J];電力系統(tǒng)自動(dòng)化;2008年01期
4 孫元章;劉海濤;程林;王鵬;;運(yùn)行可靠性在線短期評(píng)估方案[J];電力系統(tǒng)自動(dòng)化;2008年03期
5 王成亮;趙淵;周家啟;劉威;韓松柏;;基于日發(fā)電計(jì)劃的電力系統(tǒng)運(yùn)行風(fēng)險(xiǎn)概率評(píng)估[J];電力系統(tǒng)自動(dòng)化;2008年04期
6 朱清清;嚴(yán)正;賈燕冰;王亮;;輸電線路運(yùn)行可靠性預(yù)測(cè)[J];電力系統(tǒng)自動(dòng)化;2010年24期
7 姚國(guó)平,余岳峰,王志征;如東沿海地區(qū)風(fēng)速數(shù)據(jù)分析及風(fēng)力發(fā)電量計(jì)算[J];電力自動(dòng)化設(shè)備;2004年04期
8 孫元章,程林,劉海濤;基于實(shí)時(shí)運(yùn)行狀態(tài)的電力系統(tǒng)運(yùn)行可靠性評(píng)估[J];電網(wǎng)技術(shù);2005年15期
9 張碩;李庚銀;周明;劉偉;;風(fēng)電場(chǎng)可靠性建模[J];電網(wǎng)技術(shù);2009年13期
10 江志輝;華鋒;曲平;;一個(gè)新的熱帶氣旋參數(shù)調(diào)整方案[J];海洋科學(xué)進(jìn)展;2008年01期
,本文編號(hào):1898789
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1898789.html