基于電場(chǎng)特征集和支持向量機(jī)的空氣間隙起暈和擊穿電壓預(yù)測(cè)研究
本文選題:空氣間隙 + 起暈電壓; 參考:《武漢大學(xué)》2014年博士論文
【摘要】:特高壓電網(wǎng)可以顯著提高電網(wǎng)的安全性、可靠性、靈活性和經(jīng)濟(jì)性。電磁環(huán)境和外絕緣特性是特高壓輸變電工程設(shè)計(jì)和運(yùn)行的重點(diǎn)關(guān)注問(wèn)題,其核心內(nèi)容分別為電暈控制和空氣間距選擇,基本依據(jù)分別為空氣間隙的起暈和擊穿特性。考核性試驗(yàn)是檢驗(yàn)特高壓工程設(shè)計(jì)是否滿足要求的主要依據(jù),但試驗(yàn)存在周期長(zhǎng)、代價(jià)高的問(wèn)題,同時(shí)難以窮舉實(shí)際輸變電工程間隙。此外,試驗(yàn)取得的研究結(jié)論大都建立在間隙尺度之上,對(duì)于工程上難以采用幾何尺度進(jìn)行描述的復(fù)雜間隙結(jié)構(gòu),其適用范圍受到了很大的限制。因此,有必要深入開(kāi)展空氣間隙放電機(jī)理和模型的研究,通過(guò)仿真手段預(yù)測(cè)得到各種間隙結(jié)構(gòu)在不同運(yùn)行條件下的起暈和擊穿電壓值,并用于指導(dǎo)實(shí)際輸變電工程設(shè)計(jì)。 目前,空氣間隙起暈和擊穿電壓的預(yù)測(cè)方法主要包括經(jīng)驗(yàn)、半經(jīng)驗(yàn)公式和物理模型。經(jīng)驗(yàn)、半經(jīng)驗(yàn)公式由于某些參數(shù)是在特定試驗(yàn)條件或前提假設(shè)下獲得的,故適用范圍有限。物理模型從放電發(fā)展的物理過(guò)程來(lái)預(yù)測(cè)電暈或擊穿特性,在過(guò)去20年內(nèi)取得了長(zhǎng)足進(jìn)展。然而,由于物理模型十分復(fù)雜,仍存在一些尚未解決的問(wèn)題,導(dǎo)致其預(yù)測(cè)值與試驗(yàn)值仍存在較大偏差,難以有效指導(dǎo)實(shí)際工程設(shè)計(jì)。針對(duì)上述問(wèn)題,本文提出了一種基于電場(chǎng)特征集和支持向量機(jī)(support vector machine, SVM)的空氣間隙起暈和擊穿電壓預(yù)測(cè)方法。基于提出的方法,對(duì)輸變電工程中的金具(如棒、球結(jié)構(gòu))和絞線的直流起暈電壓以及不同電極結(jié)構(gòu)空氣間隙的擊穿電壓進(jìn)行了預(yù)測(cè),并分析了相關(guān)的影響因素。同時(shí),對(duì)部分間隙結(jié)構(gòu)的起暈和擊穿電壓進(jìn)行了試驗(yàn)測(cè)量,結(jié)合相關(guān)文獻(xiàn)的試驗(yàn)數(shù)據(jù),驗(yàn)證了所提出的空氣間隙起暈和擊穿電壓預(yù)測(cè)方法的有效性。最后,提出了一種提高長(zhǎng)空氣間隙絕緣強(qiáng)度的措施,并進(jìn)行了試驗(yàn)驗(yàn)證。本文的研究成果對(duì)特高壓輸變電工程的電暈控制和空氣間距選擇具有一定的理論和工程應(yīng)用價(jià)值。本文的主要內(nèi)容及取得的成果如下: (1)提出了一種基于電場(chǎng)特征集和SVM的空氣間隙起暈和擊穿電壓預(yù)測(cè)方法。提出采用電場(chǎng)特征集表征空氣間隙結(jié)構(gòu),作為SVM的輸入?yún)⒘;以間隙是否起暈或擊穿作為SVM的輸出參量,即將起暈和擊穿電壓的預(yù)測(cè)由回歸問(wèn)題轉(zhuǎn)換成二分類問(wèn)題,建立了空氣間隙起暈和擊穿電壓的預(yù)測(cè)模型。 (2)基于提出的方法,對(duì)棒-板間隙的正直流起暈電壓進(jìn)行了預(yù)測(cè)研究,通過(guò)對(duì)比預(yù)測(cè)值與試驗(yàn)值及已有方法的預(yù)測(cè)值,證明了所提出方法對(duì)起暈電壓預(yù)測(cè)的有效性和優(yōu)越性。提出了起暈電壓測(cè)量的臭氧檢測(cè)法,結(jié)合提出的預(yù)測(cè)方法,分析了絕緣罩對(duì)棒-板間隙負(fù)直流起暈電壓的影響,結(jié)果表明:在棒-板間距大于一定值后,絕緣罩表面積累的空間電荷會(huì)提高棒-板間隙的負(fù)直流起暈電壓值,起暈電壓增益隨間距的增大和絕緣罩內(nèi)徑的減小而增大。對(duì)+660kV直流換流站閥廳內(nèi)均壓球的起暈電壓進(jìn)行了試驗(yàn)和預(yù)測(cè)研究,得到了均壓球表面的起暈場(chǎng)強(qiáng)控制值,通過(guò)對(duì)比電場(chǎng)有限元數(shù)值計(jì)算結(jié)果,證明了均壓球在閥廳運(yùn)行環(huán)境中不會(huì)起暈。 (3)將提出的方法應(yīng)用于負(fù)直流下絞線的起暈電壓預(yù)測(cè)中,將預(yù)測(cè)值與試驗(yàn)值及已有方法的預(yù)測(cè)值進(jìn)行了對(duì)比。結(jié)合起暈電壓的光電離預(yù)測(cè)模型,分析了絞線起暈電壓與大氣參數(shù)(氣壓、海拔、溫度)和絞線結(jié)構(gòu)參數(shù)(絞線半徑、對(duì)地高度、分裂間距、分裂數(shù))的關(guān)系,以及絞線表面粗糙系數(shù)與絞線半徑和最外層細(xì)導(dǎo)線數(shù)的關(guān)系。 (4)采用提出的方法對(duì)稍不均勻電場(chǎng)短空氣間隙的工頻擊穿電壓進(jìn)行了預(yù)測(cè),同時(shí)開(kāi)展了工頻耐壓試驗(yàn),研究中考慮了球隙、棒-板和球-板等典型電極結(jié)構(gòu)和球-板-球異形電極結(jié)構(gòu)。通過(guò)對(duì)比預(yù)測(cè)值和試驗(yàn)值,驗(yàn)證了方法對(duì)稍不均勻電場(chǎng)短空氣間隙擊穿電壓預(yù)測(cè)的有效性。對(duì)比分析了BP神經(jīng)網(wǎng)絡(luò)、RBF神經(jīng)網(wǎng)絡(luò)和SVM三種方法對(duì)考慮溫濕度影響的球隙工頻擊穿電壓的預(yù)測(cè)效果,證明了SVM方法在非線性逼近和泛化能力方面具有一定的優(yōu)越性。 (5)針對(duì)極不均勻電場(chǎng)長(zhǎng)空氣間隙擊穿特性明顯受到電暈放電產(chǎn)生的空間電荷影響的問(wèn)題,在稍不均勻電場(chǎng)短空氣間隙擊穿電壓預(yù)測(cè)模型的基礎(chǔ)上,提出了兩種考慮電暈影響的方法,并進(jìn)行了對(duì)比分析。將提出的方法成功應(yīng)用于球-板長(zhǎng)間隙的正極性操作沖擊50%放電電壓預(yù)測(cè)中,從而在一定精度要求范圍內(nèi),可采用預(yù)測(cè)替代試驗(yàn),達(dá)到減少試驗(yàn)次數(shù)和降低試驗(yàn)費(fèi)用的效果。最后,提出了一種多間隙結(jié)構(gòu)提高長(zhǎng)空氣間隙絕緣強(qiáng)度的措施,并進(jìn)行了試驗(yàn)驗(yàn)證。
[Abstract]:UHV power grid can significantly improve the security, reliability, flexibility and economy of the power grid. The electromagnetic environment and external insulation characteristics are the key concerns of the design and operation of UHV transmission and transformation engineering. The core contents are corona control and air spacing selection, and the basic basis is the halo and breakdown characteristics of air gap, respectively. Nuclear test is the main basis for testing the requirements of UHV Engineering design, but the test has a long period and high cost. At the same time, it is difficult to exhaustion the actual transmission and Transformation Engineering gap. In addition, the research conclusions obtained by the experiment are mostly based on the gap scale, which can not be described by the geometric scale in the process. The gap structure has been greatly restricted. Therefore, it is necessary to carry out the research on the mechanism and model of air gap discharge, and predict the halo and breakdown voltage of various gap structures under different operating conditions by means of simulation, and use it to guide the design of actual transmission and transmission engineering.
At present, the prediction method of air clearance and breakdown voltage mainly includes experience, semi empirical formula and physical model. Experience, semi empirical formula, because some parameters are obtained under specific test conditions or premise assumptions, so the scope of application is limited. The physical model predicts corona or breakdown characteristics from the physical process of discharge development. It has made great progress in 20 years. However, because of the complexity of the physical model, there are still some unsolved problems, which lead to a large deviation between the predicted value and the test value, and it is difficult to effectively guide the actual engineering design. In this paper, an electric field feature set and a support vector machine (support vector machine) are proposed in this paper. SVM) the prediction method of air clearance and breakdown voltage. Based on the proposed method, the DC corona voltage and the breakdown voltage of different electrode structures in the transmission and transformation project are predicted, and the related factors are analyzed. At the same time, the halo and shock of some gap structures are also analyzed. The test measurements were carried out and the effectiveness of the proposed method for predicting the air clearance and breakdown voltage was verified by the experimental data of relevant literature. Finally, a measure to improve the insulation strength of the long air gap was proposed and tested. The results of the research on the corona control of the UHV transmission and transformation project. The selection of air distance has certain theoretical and engineering application value. The main contents and achievements of this paper are as follows:
(1) a prediction method of air clearance and breakdown voltage based on the characteristic set of electric field and SVM is proposed. It is proposed to use the characteristic set of the electric field to represent the air gap structure as the input parameter of the SVM. If the gap is halo or breakdown as the output parameter of the SVM, the prediction of the forthcoming halo and the breakdown voltage is converted from the regression to the two classification. A prediction model for the vignetting and breakdown voltage of the air gap is established.
(2) based on the proposed method, the positive DC corona voltage of the rod and plate gap is predicted. The effectiveness and superiority of the proposed method to the prediction of the halo voltage is proved by comparing the predicted values and the predicted values and the predicted values of the existing methods. The ozone detection method for the measurement of the halo voltage is proposed, and the analysis of the proposed method is analyzed. The effect of insulation cover on the negative DC corona voltage in rod and plate clearance is shown. The results show that after the rod and plate spacing is greater than a certain value, the space charge with the surface area of the insulating cover increases the negative DC corona voltage value of the rod and plate gap, and the gain of the halo voltage increases with the increase of the distance and the decrease of the inner diameter of the insulating cover. The valve hall of the +660kV DC converter station is increased. The corona voltage of the internal uniform pressure ball is tested and predicted, and the control value of the corona field strength on the surface of the pressure ball is obtained. By comparing the numerical results of the finite element analysis of the electric field, it is proved that the pressure sharing ball will not be halo in the operating environment of the valve hall.
(3) the proposed method is applied to the prediction of the halo voltage of the negative DC stranded wire. The predicted values are compared with the experimental values and the predicted values of the existing methods. Combined with the photoionization prediction model of the halo voltage, the stranded corona voltage and atmospheric parameters (air pressure, altitude, temperature) and the structure parameters of the strands (the radius of the twisted line, the ground height, and the height of the ground are analyzed. The relationship between the crack spacing, splitting number, and the surface roughness coefficient of the stranded wire is related to the radius of the stranded wire and the number of the outermost thin wires.
(4) the proposed method is used to predict the power frequency breakdown voltage of the short air gap in a slightly uneven electric field, and the power frequency pressure test is carried out at the same time. In the study, the typical electrode structure and the ball plate and ball special-shaped electrode structure are taken into consideration in the study. By comparing the predicted values and the experimental values, the method is proved to be slightly uneven electric field. The effectiveness of short air gap breakdown voltage prediction is compared and analyzed by comparing the prediction effect of three methods of BP neural network, RBF neural network and SVM on the frequency breakdown voltage of spherical gap considering the influence of temperature and humidity. It is proved that the SVM method has a certain advantage over the nonlinear approximation and generalization ability.
(5) on the basis of the prediction model of the short air gap breakdown voltage in a slightly uneven electric field, two methods to consider the effect of corona are put forward on the basis of the effect of the space charge of the corona discharge on the gap breakdown characteristic of the air gap in the extremely uneven electric field. The method is applied to the ball plate length successfully. The positive polar operation of the gap is used to predict the 50% discharge voltage. In the range of a certain precision, the prediction substitution test can be used to reduce the test times and reduce the cost of the test. Finally, a multi gap structure is proposed to improve the insulation strength of the long air gap, and the experimental verification is carried out.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM83
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 紀(jì)新元;;±800kV特高壓直流輸電線路空氣間隙選擇[J];吉林電力;2007年04期
2 孫昭英;丁玉劍;廖蔚明;宿志一;李慶峰;;青藏直流聯(lián)網(wǎng)工程空氣間隙的海拔校正[J];電網(wǎng)技術(shù);2010年05期
3 袁耀;蔣興良;杜勇;馬建國(guó);孫才新;;應(yīng)用人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)棒-板短空氣間隙在淋雨條件下的交流放電電壓[J];高電壓技術(shù);2012年01期
4 蔣興良;袁耀;杜勇;馬建國(guó);畢茂強(qiáng);;棒-板短空氣間隙淋雨交流放電特性及電壓校正[J];電工技術(shù)學(xué)報(bào);2012年12期
5 莊志偉;朱文衛(wèi);;廣東500kV同塔四回線路空氣間隙選擇研究[J];廣東電力;2013年02期
6 徐禮賢;干字塔繞跳線空氣間隙臺(tái)風(fēng)下放電初析[J];華東電力;1991年03期
7 王成端;張志呈;;炮孔內(nèi)空氣間隙作用的機(jī)理探討[J];爆破;1991年04期
8 程德蓉;劉啟俊;;發(fā)電機(jī)空氣間隙對(duì)橫差電流的影響[J];四川電力技術(shù);2010年06期
9 蔣興良;奚思建;劉偉;袁耀;杜勇;肖丹華;;降雨對(duì)棒-板(棒-棒)空氣間隙交流放電特性的影響[J];重慶大學(xué)學(xué)報(bào);2012年01期
10 楊占剛;舒立春;蔣興良;胡琴;邱宗奎;;地表紫外輻射對(duì)棒-板空氣間隙工頻放電的影響[J];電網(wǎng)技術(shù);2013年06期
相關(guān)會(huì)議論文 前6條
1 李小建;李銳海;文華;段一雄;;空氣間隙在高海拔的直流放電特性[A];2007云南電力技術(shù)論壇論文集[C];2007年
2 冉學(xué)彬;楊慶;董岳;羅大慶;;鳥(niǎo)糞影響下的緊湊型塔窗—導(dǎo)線空氣間隙交流放電特性研究[A];第四屆全國(guó)架空輸電線路技術(shù)交流研討會(huì)論文集[C];2013年
3 紀(jì)新元;;±800千伏特高壓直流線路空氣間隙選擇研究[A];高效 清潔 安全 電力發(fā)展與和諧社會(huì)建設(shè)——吉林省電機(jī)工程學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集[C];2008年
4 朱玉良;;發(fā)電機(jī)空氣間隙在線監(jiān)測(cè)技術(shù)在三峽右岸電站的應(yīng)用[A];中國(guó)水力發(fā)電工程學(xué)會(huì)電力系統(tǒng)自動(dòng)化專委會(huì)2009年年會(huì)暨學(xué)術(shù)交流會(huì)論文集[C];2009年
5 劉毅;燕桂新;梅昕;;CAD與數(shù)字?jǐn)z影的電流和空氣間隙法的應(yīng)用研究[A];2010中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十八次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2010年
6 李晉;;高海拔地區(qū)的短空氣間隙雷電沖擊50%放電電壓研究[A];青藏鐵路運(yùn)營(yíng)管理及相關(guān)技術(shù)研討會(huì)論文集[C];2005年
相關(guān)博士學(xué)位論文 前4條
1 黃翠;高性能硅通孔(TSV)三維互連研究[D];清華大學(xué);2015年
2 舒勝文;基于電場(chǎng)特征集和支持向量機(jī)的空氣間隙起暈和擊穿電壓預(yù)測(cè)研究[D];武漢大學(xué);2014年
3 袁耀;短空氣間隙暴雨擊穿特性與放電模型研究[D];重慶大學(xué);2014年
4 曹晶;高海拔換流站空氣間隙放電特性及海拔修正研究[D];武漢大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 胡新怡;±800kV特高壓直流輸電線路的塔頭空氣間隙和絕緣配合計(jì)算[D];上海交通大學(xué);2014年
2 劉典;短空氣間隙放電流注分叉特性研究[D];華中科技大學(xué);2015年
3 劉偉;降雨對(duì)棒—板短空氣間隙直流放電影響的仿真及試驗(yàn)研究[D];重慶大學(xué);2011年
4 黃俊;自然霧中棒板短空氣間隙放電特性與放電機(jī)理分析[D];重慶大學(xué);2013年
5 劉洋;霧霾的模擬及其對(duì)棒—板空氣間隙放電特性影響研究[D];重慶大學(xué);2015年
6 林浩然;基于多元統(tǒng)計(jì)分析的大氣參數(shù)對(duì)空氣間隙外絕緣影響的試驗(yàn)研究[D];華南理工大學(xué);2012年
7 于亮;低氣壓下110kV系統(tǒng)棒-板空氣間隙沖擊放電特性及電壓校正研究[D];重慶大學(xué);2005年
8 王軍;低氣壓下棒—板空氣間隙正極性操作沖擊放電特性及校正的研究[D];重慶大學(xué);2006年
9 吳亮;沙塵環(huán)境下空氣間隙和平板模型沿面放電特性的研究[D];重慶大學(xué);2008年
10 孫利朋;棒—板空氣間隙淋雨操作沖擊放電特性研究[D];重慶大學(xué);2008年
,本文編號(hào):1877695
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1877695.html