海上風(fēng)電RMC-HVDC系統(tǒng)協(xié)調(diào)控制策略研究
發(fā)布時間:2018-05-12 04:20
本文選題:精簡矩陣變換器 + 海上風(fēng)電-高壓直流輸電 ; 參考:《湘潭大學(xué)》2014年碩士論文
【摘要】:海上風(fēng)力發(fā)電-高壓直流輸電(high voltage direct current,HVDC)系統(tǒng)是風(fēng)力發(fā)電及其功率傳輸技術(shù)的發(fā)展方向。由于海上運輸、安裝、維護的成本較高,這就要求海上風(fēng)電-高壓直流輸電系統(tǒng)的核心環(huán)節(jié)——換流器,具有高集成度、高可靠性和高效率等特點,并且還需要考慮新的換流器拓?fù)浣Y(jié)構(gòu)和控制策略來減少投資和運行成本。精簡矩陣變換器(reduced matrix converter,RMC)是一種從傳統(tǒng)矩陣變換器拓?fù)渲醒苌鰜淼男滦凸β首儞Q器,由其構(gòu)成的RMC高頻鏈換流器具有轉(zhuǎn)換級數(shù)少、功率密度高、效率高和可靠性高等優(yōu)點,因而在海上風(fēng)電-高壓直流輸電系統(tǒng)中有著極大的應(yīng)用前景。 近年來各國學(xué)者以海上風(fēng)電-高壓直流輸電為應(yīng)用背景,對RMC高頻鏈換流器的拓?fù)浣Y(jié)構(gòu)和調(diào)制策略等方面進行了研究,并取得了一定的成果。風(fēng)速的波動性導(dǎo)致風(fēng)電場輸出的有功功率不穩(wěn)定,交流系統(tǒng)故障等情況會使得岸上逆變器輸出有功功率受限而造成直流母線電壓泵升,危及設(shè)備的安全運行。然而,對各種工況和故障情況下海上RMC-岸上電壓源換流器(voltage source converter,VSC)協(xié)調(diào)控制策略的研究,以保證高壓直流輸電系統(tǒng)送受端有功功率傳輸平衡,國內(nèi)外尚未見到相關(guān)報道。此外,基于RMC高頻鏈換流器的串聯(lián)多端海上風(fēng)電-高壓直流輸電系統(tǒng)無需海上升壓變壓器即可提升電壓等級,減少了系統(tǒng)的尺寸和重量,提升了系統(tǒng)的功率密度和效率。 本文首先詳細(xì)分析了電壓型RMC的雙極性電壓空間矢量調(diào)制(bipolar voltage spacevector pulse-width modulation,B-V-SVM)策略,并推導(dǎo)了輸入電壓和輸出電壓之間的數(shù)學(xué)關(guān)系。第二,提出了基于RMC的直驅(qū)海上風(fēng)電-高壓直流輸電系統(tǒng)控制策略,實現(xiàn)了最大風(fēng)能跟蹤(maximum power point tracking,MPPT)、直流穩(wěn)壓控制以及并網(wǎng)有功/無功功率解耦控制。為提高該系統(tǒng)的低電壓穿越(low-voltage ride-through,LVRT)能力,,提出了基于有功功率指令修正的RMC高頻鏈換流器功率協(xié)調(diào)控制策略,并結(jié)合變槳距角控制實現(xiàn)了高壓直流輸電系統(tǒng)海上RMC-岸上VSC的協(xié)調(diào)控制,在岸上電網(wǎng)電壓跌落時保持高壓直流輸電系統(tǒng)送受端有功功率傳輸平衡。第三,提出了基于RMC高頻鏈換流器的串聯(lián)多端海上風(fēng)電-高壓直流輸電系統(tǒng)拓?fù)浣Y(jié)構(gòu)及其協(xié)調(diào)控制策略,該控制策略由風(fēng)電場監(jiān)測控制(wind farm supervisory control,WFSC)、海上風(fēng)電機組控制和網(wǎng)側(cè)并網(wǎng)控制組成,并采用最優(yōu)直流電流參考算法。在系統(tǒng)正常運行時,該控制策略可實現(xiàn)各風(fēng)電機組獨立最大風(fēng)能跟蹤控制、直流電流控制和并網(wǎng)有功/無功功率解耦控制;在風(fēng)電機組故障和電網(wǎng)電壓波動等情況下保證系統(tǒng)安全高效運行。最后,搭建了基于RMC的直驅(qū)海上風(fēng)電-高壓直流輸電系統(tǒng)控制策略仿真模型并進行了仿真驗證,仿真結(jié)果驗證了所提拓?fù)浣Y(jié)構(gòu)及其控制策略的正確性和可行性。
[Abstract]:Offshore wind power generation-high voltage direct current (HVDC) system is the development direction of wind power generation and its power transmission technology. Because of the high cost of sea transportation, installation and maintenance, the core link of offshore wind power and HVDC transmission system is converter, which has the characteristics of high integration, high reliability and high efficiency. We also need to consider new converter topology and control strategy to reduce investment and operation costs. Reduced matrix converter (RMC) is a new type of power converter derived from the traditional matrix converter topology. It has the advantages of less converters, high power density, high efficiency and high reliability. So it has great application prospect in offshore wind power-HVDC transmission system. In recent years, scholars in various countries have studied the topology and modulation strategy of RMC high-frequency chain converter with the background of offshore wind power-HVDC transmission, and have achieved certain results. The fluctuation of wind speed leads to the instability of the active power output from the wind farm, and the failure of the AC system makes the DC bus voltage pump rise due to the limitation of the active power output of the shore inverter, which endangers the safe operation of the equipment. However, the coordinated control strategy of marine RMC-shore voltage source converter (RMC-shore voltage source converter) under various working conditions and faults is studied to ensure the balance of active power transmission at the receiving end of HVDC transmission system, which has not been reported at home and abroad. In addition, the series multi-terminal offshore wind power-HVDC transmission system based on RMC high-frequency chain converter can raise the voltage level without the need of offshore booster transformer, reduce the size and weight of the system, and improve the power density and efficiency of the system. In this paper, the bipolar voltage spacevector pulse-width modulation- B-V-SVM strategy of voltage source RMC is analyzed in detail, and the mathematical relationship between input voltage and output voltage is derived. Secondly, the control strategy of direct-drive offshore wind power-HVDC transmission system based on RMC is proposed, which realizes maximum power point tracking control, DC voltage stabilizing control and active / reactive power decoupling control. In order to improve the low-voltage traversing low-volride-through-LVRTs of the system, a coordinated power control strategy for RMC high-frequency chain converter based on active power instruction correction is proposed. Combined with variable pitch angle control, the coordinated control of offshore RMC-shore VSC of HVDC transmission system is realized, and the balance of active power transmission at the receiving end of HVDC transmission system is maintained when the voltage drops on shore. Thirdly, the topology structure and coordinated control strategy of series multi-terminal offshore wind power-HVDC transmission system based on RMC high-frequency chain converter are proposed. The control strategy is composed of wind farm monitoring control farm supervisory control wind turbine control and grid side grid-connected control. The optimal DC current reference algorithm is adopted. When the system is running normally, the control strategy can realize the independent maximum wind power tracking control, DC current control and decoupling control of active and reactive power. The safe and efficient operation of the system is ensured under the condition of wind turbine fault and voltage fluctuation of power grid. Finally, the control strategy simulation model of direct-drive offshore wind-HVDC system based on RMC is built and verified. The simulation results verify the correctness and feasibility of the proposed topology and control strategy.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM614
【參考文獻】
相關(guān)期刊論文 前1條
1 鄧文浪;謝敏;段斌;;雙級矩陣變換器直驅(qū)風(fēng)力發(fā)電系統(tǒng)最大風(fēng)能追蹤[J];電網(wǎng)技術(shù);2012年05期
本文編號:1877074
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1877074.html
最近更新
教材專著