基于觀測器的永磁同步電機魯棒穩(wěn)定性分析與控制器設計
本文選題:永磁同步電機 + LMI; 參考:《華南理工大學》2014年博士論文
【摘要】:永磁同步電機(PMSM)以其結構簡單、高功率密度、高效可靠、靈活的控制方式、大扭矩等特點,在電力傳動、伺服驅動、電動汽車、新能源風力發(fā)電、機器人等方面獲得了廣泛應用。研究、分析、設計高性能的永磁同步電機控制系統(tǒng)具有重要的現實意義和應用價值。然而PMSM存在著諸如定子電流、電磁轉矩、轉子磁鏈的耦合,系統(tǒng)飽和及退磁現象、參數攝動和外部擾動、混沌運動等諸多不利因素,直接導致控制系統(tǒng)的靜動態(tài)性能下降。本論文在綜述PMSM分析與控制研究現狀的基礎上,對PMSM控制系統(tǒng)的分析與設計進行了較為深入的研究,以期進一步揭示PMSM的性質,為PMSM的分析與設計提供一種新的思路和途徑。主要研究工作和創(chuàng)新點如下:(1)針對PMSM不確定系統(tǒng),提出系統(tǒng)魯棒穩(wěn)定與鎮(zhèn)定的充分條件。深入分析不同坐標系下PMSM數學模型的基礎上,首先針對PMSM系統(tǒng)數參數攝動和外部擾動的情形,獲得Laplace變換的解析解。然后,利用Gronwall-Bellman引理獲得系統(tǒng)零解漸近穩(wěn)定的充分條件。進一步,基于Lyapunov穩(wěn)定性理論,利用矩陣代數變換獲得基于線性矩陣不等式(LMI)穩(wěn)定性條件。最后,基于以上穩(wěn)定性條件,獲得PMSM不確定系統(tǒng)魯棒狀態(tài)反饋控制器設計方法。(2)針對PMSM系統(tǒng),提出PMSM系統(tǒng)基于觀測器的狀態(tài)反饋魯棒控制方法?紤]參數不確定性的情形下,首先設計一種全維觀測器,應用Lyapnov穩(wěn)定性理論獲得閉環(huán)系統(tǒng)的穩(wěn)定性條件。然后借助矩陣奇異值分解技巧,將穩(wěn)定性條件轉化為易于求解的LMI條件。進一步根據穩(wěn)定性條件,獲得永磁同步電機的觀測器-反饋控制器,實現電機速度跟蹤控制。(3)針對永磁同步風力發(fā)電機(PMSG)系統(tǒng),首先應用逆系統(tǒng)控制理論和內?刂品椒,實現永磁同步風力發(fā)電系統(tǒng)混沌控制。然后針對PMSG不確定故障模型,設計收斂于原系統(tǒng)的全維和降維故障觀測器。進一步,提出基于故障觀測器的PMSG系統(tǒng)執(zhí)行器故障檢測方法和故障重構的數值算法。(4)針對PMSM系統(tǒng)速度跟蹤問題,首先利用反推方法設計能準確跟蹤永磁同步電機轉速和電流的反推控制器。然后考慮到狀態(tài)的不可測,基于Lyaponov穩(wěn)定性定理設計滑模觀測器。利用狀態(tài)觀測器獲得的電機狀態(tài)估計,將估計狀態(tài)應用于反推控制器,實現對PMSM系統(tǒng)蹤控制。最后,分析并建立了PMSM系統(tǒng)僅極對數已知的多個系數未知的不確定性模型,考慮參數不確定性的情形下,設計自適應反推控制器,實現對PMSM系統(tǒng)的高精度控制。
[Abstract]:PMSM (permanent Magnet synchronous Motor) is characterized by its simple structure, high power density, high efficiency and reliability, flexible control mode, large torque, etc., in electric drive, servo drive, electric vehicle, new energy wind power generation, etc. Robots have been widely used in many fields. The research, analysis and design of high performance permanent magnet synchronous motor control system have important practical significance and application value. However, there are many unfavorable factors in PMSM, such as stator current, electromagnetic torque, rotor flux coupling, system saturation and demagnetization, parameter perturbation and external disturbance, chaotic motion and so on, which directly lead to the degradation of static and dynamic performance of the control system. On the basis of summarizing the research status of PMSM analysis and control, this paper makes a deep research on the analysis and design of PMSM control system, in order to further reveal the nature of PMSM, and provide a new way for the analysis and design of PMSM. The main research and innovations are as follows: (1) for PMSM uncertain systems, sufficient conditions for robust stability and stabilization are proposed. Based on the analysis of PMSM mathematical models in different coordinate systems, the analytical solution of Laplace transform is obtained for the case of the perturbation of the number parameters and the external disturbances of the PMSM system. Then, the sufficient conditions for the asymptotic stability of the zero solution of the system are obtained by using the Gronwall-Bellman Lemma. Furthermore, based on Lyapunov stability theory, the stability conditions based on linear matrix inequalities (LMI) are obtained by matrix algebraic transformation. Finally, based on the above stability conditions, a robust state feedback controller design method for PMSM uncertain systems is obtained. (2) for PMSM systems, an observer based robust state feedback control method for PMSM systems is proposed. In the case of parameter uncertainty, a full-order observer is first designed, and the stability conditions of the closed-loop system are obtained by using Lyapnov stability theory. Then the stability condition is transformed into the LMI condition which is easy to solve with the help of matrix singular value decomposition technique. Furthermore, according to the stability condition, the observer feedback controller of PMSM is obtained, and the speed tracking control of PMSG3 is realized. Firstly, the inverse system control theory and the internal model control method are applied to the PMSG system. The chaos control of permanent magnet synchronous wind power generation system is realized. Then, aiming at the PMSG uncertain fault model, a full-dimension reduced-order fault observer converging to the original system is designed. Furthermore, a fault detection method for PMSG system based on fault observer and a numerical algorithm for fault reconstruction are proposed. Firstly, a backstepping controller is designed to track the speed and current of PMSM accurately. Then considering the unmeasurable state, the sliding mode observer is designed based on Lyaponov stability theorem. The state estimation of the motor obtained by the state observer is applied to the backstepping controller to realize the tracer control of the PMSM system. Finally, several uncertain models with unknown coefficients are analyzed and established for PMSM system with only the extremely logarithmic known. In the case of parameter uncertainty, an adaptive backstepping controller is designed to control the PMSM system with high precision.
【學位授予單位】:華南理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM341
【參考文獻】
相關期刊論文 前10條
1 孟昭軍;孫昌志;安躍軍;;基于時間延遲狀態(tài)反饋精確線性化的PMSM混沌反控制[J];電工技術學報;2007年03期
2 劉棟良;王家軍;崔麗麗;;永磁同步電機參數自適應調速控制[J];電工技術學報;2011年08期
3 方一鳴;任少沖;王志杰;焦曉紅;;永磁同步電動機轉速自適應模糊Backstepping控制[J];電機與控制學報;2011年06期
4 張裊娜;王永慶;李景帥;;基于SOM神經網絡的永磁同步電機故障診斷[J];吉林大學學報(信息科學版);2012年06期
5 劉向向;李新宇;王奔;鄧大磊;;變結構控制策略在直驅永磁同步風力發(fā)電機中的應用[J];電網技術;2013年02期
6 沈建新;繆冬敏;;變速永磁同步發(fā)電機系統(tǒng)及控制策略[J];電工技術學報;2013年03期
7 邢巖;王旭;劉巖;楊丹;;一種新型永磁同步電機定子磁鏈觀測器[J];東北大學學報(自然科學版);2013年06期
8 劉剛;李華德;;PMSM非線性解耦控制系統(tǒng)的L_2增益干擾抑制[J];哈爾濱工業(yè)大學學報;2010年12期
9 劉賢興;胡育文;卜言柱;;基于滑模變結構的永磁同步電機精確線性化控制[J];航空學報;2008年05期
10 林輝;王永賓;計宏;;基于反饋線性化的永磁同步電機模型預測控制[J];測控技術;2011年03期
相關博士學位論文 前4條
1 韋篤取;永磁同步電動機控制系統(tǒng)混沌行為分析及抑制和鎮(zhèn)定[D];華南理工大學;2011年
2 張輝;永磁同步電機變頻驅動魯棒控制策略研究[D];中國礦業(yè)大學;2011年
3 吳芳;無傳感器永磁同步電機的位置辨識與控制研究[D];華中科技大學;2011年
4 楊明;船舶電力推進永磁同步電機非線性反步控制器設計與優(yōu)化研究[D];大連海事大學;2012年
,本文編號:1858659
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1858659.html