離網(wǎng)模式下逆變器接口的控制策略
本文選題:微網(wǎng) + 逆變器并聯(lián) ; 參考:《浙江大學(xué)》2015年碩士論文
【摘要】:隨著煤、石油等不可再生能源的消耗,能源危機(jī)成為人們不得不面對(duì)的問題,而太陽(yáng)能、風(fēng)能等能源的可再生性給解決這個(gè)問題提供了新思路。分布式發(fā)電迅速崛起,然而由于新能源的隨機(jī)性和間歇性,分布式發(fā)電向傳統(tǒng)電網(wǎng)接入成為新問題。一些科學(xué)家提出將這些分布式新能源與一些儲(chǔ)能單位整合成一個(gè)有機(jī)的整體共同控制,因此產(chǎn)生了微網(wǎng)的概念。微網(wǎng)的穩(wěn)定運(yùn)行離不開合理的控制技術(shù),因此對(duì)微網(wǎng)中微源控制的研究十分有必要。 微網(wǎng)中微源接口包括傳統(tǒng)的發(fā)電機(jī)型接口和逆變器型接口,由于新能源大多采用逆變器型接口并網(wǎng),因此本文的主要研究對(duì)象是逆變器型微源及其并聯(lián)系統(tǒng)的控制方式。逆變器型微源的接口控制方式包括恒功率控制、恒壓恒頻控制和下垂控制。下垂控制能夠利用本地信息控制,通信要求較低,是本文研究的主體,同時(shí)恒壓恒頻控制在穩(wěn)定頻率和電壓方面起到重要作用,本文也對(duì)其進(jìn)行了仿真和研究。 傳統(tǒng)下垂控制中并未對(duì)線路阻抗進(jìn)行合理分析和考慮,當(dāng)線路阻抗為感性時(shí)有功和無(wú)功功率才能解耦和正確控制,而低壓微網(wǎng)中線路阻抗為阻性,使用傳統(tǒng)下垂控制會(huì)導(dǎo)致有功和無(wú)功功率耦合,此外由于線路電壓降的不同,無(wú)功功率不能夠按照設(shè)定的比例分配,這會(huì)使一些微源超過容量或出現(xiàn)嚴(yán)重的過流,對(duì)微源造成損害。針對(duì)低壓微網(wǎng)中傳統(tǒng)下垂控制無(wú)法適用的問題,本文在相關(guān)文獻(xiàn)無(wú)功功率理論基礎(chǔ)上,推得逆變器無(wú)功功率輸出與負(fù)載端電壓的線性關(guān)系,提出了一種改進(jìn)的下垂控制方法。該方法將線路阻抗看做逆變器內(nèi)阻的一部分,測(cè)量負(fù)載端的電壓作為電壓電流雙閉環(huán)控制的參考信號(hào),并添加虛擬電感調(diào)節(jié)線路阻抗的性質(zhì),使有功和無(wú)功功率解耦。最后對(duì)改進(jìn)下垂控制的功率控制模塊、虛擬阻抗模塊和電壓電流雙閉環(huán)模塊進(jìn)行了設(shè)計(jì)和分析。 在Matlab/Simulink軟件環(huán)境下的仿真結(jié)果驗(yàn)證了該控制方法的有效性。
[Abstract]:With the consumption of non-renewable energy such as coal and petroleum, the energy crisis has become a problem that people have to face, and the renewable energy such as solar energy and wind energy provide a new way to solve this problem. Distributed generation is rising rapidly. However, due to the randomness and intermittency of new energy, the access of distributed generation to traditional power grid becomes a new problem. Some scientists put forward the idea of integrating these distributed new energy sources and some energy storage units into an organic whole control system, which resulted in the concept of microgrid. The stable operation of microgrid can not be separated from reasonable control technology, so it is necessary to study microsource control in microgrid. The microsource interface in the microgrid includes the traditional generator interface and the inverter interface. Since the inverter interface is mostly used in the new energy source, the main research object of this paper is the control mode of the inverter microsource and its parallel system. The interface control methods of inverter microsource include constant power control, constant voltage and constant frequency control and droop control. Droop control can use local information control, communication requirements are low, is the main body of this study, and constant voltage and constant frequency control plays an important role in stabilizing the frequency and voltage, this paper also simulates and studies it. In the traditional droop control, the line impedance is not reasonably analyzed and considered. When the line impedance is inductive, the active and reactive power can be decoupled and controlled correctly, but the line impedance in the low-voltage microgrid is resistive. Traditional droop control can lead to active and reactive power coupling. In addition, reactive power can not be distributed according to the set proportion because of the different voltage drop of the line. This will cause some microsources to exceed capacity or cause serious overcurrent. Damage to microsources. Aiming at the problem that traditional droop control can not be applied in low-voltage microgrid, based on the theory of reactive power, the linear relationship between reactive power output and load terminal voltage of inverter is deduced in this paper, and an improved droop control method is proposed. In this method, the line impedance is regarded as a part of the inverter's internal resistance, the voltage at the load end is measured as the reference signal of the voltage and current double closed loop control, and the property of the line impedance is adjusted by the virtual inductance to decouple the active and reactive power. Finally, the power control module, virtual impedance module and voltage and current double closed loop module are designed and analyzed. The simulation results under the Matlab/Simulink software environment verify the effectiveness of the control method.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM464
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王成山;肖朝霞;王守相;;微網(wǎng)中分布式電源逆變器的多環(huán)反饋控制策略[J];電工技術(shù)學(xué)報(bào);2009年02期
2 王成山;肖朝霞;王守相;;微網(wǎng)綜合控制與分析[J];電力系統(tǒng)自動(dòng)化;2008年07期
3 牟曉春;畢大強(qiáng);任先文;;低壓微網(wǎng)綜合控制策略設(shè)計(jì)[J];電力系統(tǒng)自動(dòng)化;2010年19期
4 周賢正;榮飛;呂志鵬;羅安;彭雙劍;;低壓微電網(wǎng)采用坐標(biāo)旋轉(zhuǎn)的虛擬功率V/f下垂控制策略[J];電力系統(tǒng)自動(dòng)化;2012年02期
5 吳云亞;闞加榮;謝少軍;;適用于低壓微電網(wǎng)的逆變器控制策略設(shè)計(jì)[J];電力系統(tǒng)自動(dòng)化;2012年06期
6 鄭漳華;艾芊;;微電網(wǎng)的研究現(xiàn)狀及在我國(guó)的應(yīng)用前景[J];電網(wǎng)技術(shù);2008年16期
7 謝玲玲;時(shí)斌;華國(guó)玉;聞楓;楊露露;董權(quán)力;;基于改進(jìn)下垂控制的分布式電源并聯(lián)運(yùn)行技術(shù)[J];電網(wǎng)技術(shù);2013年04期
8 荊龍;黃杏;吳學(xué)智;;改進(jìn)型微源下垂控制策略研究[J];電工技術(shù)學(xué)報(bào);2014年02期
9 中央黨校課題組;曹新;;中國(guó)新能源發(fā)展戰(zhàn)略問題研究[J];經(jīng)濟(jì)研究參考;2011年52期
10 劉龍舞;張捍東;董克龍;;微網(wǎng)控制技術(shù)研究綜述[J];電工電氣;2012年02期
相關(guān)博士學(xué)位論文 前1條
1 呂志鵬;多逆變器型微網(wǎng)運(yùn)行與復(fù)合控制研究[D];湖南大學(xué);2012年
,本文編號(hào):1844809
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1844809.html