高電壓梯度大通流能力ZnO壓敏電阻的研究
發(fā)布時(shí)間:2018-05-03 15:49
本文選題:ZnO壓敏電阻 + 多元粉體; 參考:《西安電子科技大學(xué)》2014年碩士論文
【摘要】:ZnO壓敏電阻器因其優(yōu)良的非線性伏安特性和瞬態(tài)浪涌電流吸收能力而在電力、電子領(lǐng)域得到了廣泛應(yīng)用。如何在提高ZnO壓敏陶瓷的壓敏電壓梯度的同時(shí)也提高大電流通流能力始終是一大難題。本論文旨在保證其他各項(xiàng)電性能優(yōu)良的基礎(chǔ)上,研究制備高壓敏電壓梯度、大通流能力的ZnO壓敏元件。利用固相法和溶膠-凝膠法在其它條件相同的情況下分別制備ZnO壓敏電阻樣品,研究了配方和工藝對(duì)ZnO壓敏電阻器的微觀結(jié)構(gòu)和各項(xiàng)電性能的影響。首先采用傳統(tǒng)的固相法分別制備了Bi2O3、SnO2以及Sb203摻雜的三個(gè)系列的ZnO壓敏電阻樣品,用掃描電鏡分析了元件內(nèi)部的微觀結(jié)構(gòu),測(cè)試了不同摩爾含量的Bi2O3、SnO2和Sb203摻雜的ZnO基壓敏電阻的壓敏電壓梯度、非線性系數(shù)和漏電流,并計(jì)算了殘壓比和壓敏電壓變化率,討論了三種添加劑的含量對(duì)ZnO壓敏電阻器的微結(jié)構(gòu)和電性能的影響。實(shí)驗(yàn)結(jié)果表明:隨著B(niǎo)i203摻雜量的遞增,ZnO壓敏電阻器的壓敏電壓梯度和非線性系數(shù)先增加后減小,漏電流則先減小后增加,當(dāng)Bi203添加量為0.310 mo1%時(shí),樣品的整體電性能最好:壓敏電壓梯度VlmA=435V/ mm,非線性系數(shù)αα=42,漏電流IL=3μA,殘壓比K=1.96,在耐受8/20,μs脈沖電流后壓敏電壓變化率△VlmA/VlmA=4.89%;隨著Sn02含量的減少,ZnO壓敏電阻器的壓敏電壓梯度和非線性系數(shù)都逐漸降低,漏電流逐漸增大,當(dāng)Sn02摻雜量為0.574mo1%時(shí),樣品的綜合電性能最好:壓敏電壓梯度VlmA=408V/mm,非線性系數(shù)α=34,漏電流IL=5μA,殘壓比K=2.02,在耐受8/20,us脈沖電流后壓敏電壓變化率△VlmA/VlmA=9.13%;隨著Sb203摻雜量的遞增,ZnO壓敏電阻器的壓敏電壓梯度和非線性系數(shù)先減小后增加,漏電流則先增加后減小,當(dāng)Sb203摻雜量為0.572 mo1%時(shí),樣品的綜合電性能最好:壓敏電壓梯度VlmA=420V/mm,非線性系數(shù)αα=38,漏電流IL=3μA,殘壓比K=2.01,在耐受8/20μs脈沖電流后壓敏電壓變化率△VlmA/VlmA=7.58%。接著將Sol-Gel法制備的Mn2O3、NiO、Bi2O3、Co3O4多元氧化物粉體和Mn2O3、 NiO、Bi2O3、Co3O4、SnO2多元氧化物粉體分別引入到ZnO壓敏元件的制備工藝中:首先制備出Mn、Ni、Bi、Co(和Sn)四(五)種金屬的氧化物復(fù)合粉體,再與其他幾種氧化物添加劑和主料ZnO混合,在合適的條件下制備出了厚度為1.0mm左右,直徑為8.8 mm左右的壓敏電阻片,并對(duì)其微結(jié)構(gòu)和電性能進(jìn)行了測(cè)試、表征分析。與用傳統(tǒng)的固相法制成的壓敏電阻片進(jìn)行對(duì)比表明,Sol-Gel法制成的元件內(nèi)部粒度分布范圍窄,添加劑元素分布均勻。其電性能較固相法也有了很大改善:Sol-Gel法制備的樣品的壓敏電壓梯度和非線性系數(shù)大于傳統(tǒng)試樣,漏電流小于傳統(tǒng)試樣,8/20μs通流能力也得到了改善。當(dāng)把Mn2O3、NiO、Bi2O3、Co3O、SnO2多元氧化物粉體引入ZnO壓敏電阻的制備工藝時(shí),得到的壓敏電阻器的綜合電性能最好,這時(shí)壓敏電壓梯度VlmA=516V/mm,非線性系數(shù)α=43,漏電流IL=2μA,殘壓比K=1.78,在耐受8/20μs脈沖電流后壓敏電壓變化率△VlmA/VlmA=4.41%。
[Abstract]:ZnO varistor has been widely used in electric power and electronic field because of its excellent nonlinear volt ampere characteristics and transient surge current absorption capacity. It is a difficult problem to improve the voltage sensitive voltage gradient of ZnO varistor ceramics and increase the current flow capacity. This paper aims to ensure that other electrical properties are excellent. On the basis of the study, the ZnO varistor is prepared by the solid-phase method and the sol-gel method in the same condition, and the influence of the formula and process on the microstructure and electrical properties of the ZnO varistor is studied by the solid-phase method and sol-gel method. The traditional solid phase method is used first. Three series of Bi2O3, SnO2 and Sb203 doped ZnO varistor samples were prepared respectively. The microstructures in the components were analyzed by scanning electron microscope. The voltage sensitive voltage gradient, nonlinear system number and leakage current of Bi2O3, SnO2 and Sb203 doped ZnO based varistors with different molar content were measured, and the residual pressure ratio and voltage sensitive voltage change were calculated. The effect of the content of three additives on the microstructure and electrical properties of the ZnO varistor is discussed. The experimental results show that the pressure sensitive voltage gradient and nonlinear coefficient of the ZnO varistor increase first and then decrease with the increase of the Bi203 doping amount, and the leakage current decreases first and then increases, when the amount of Bi203 adding is 0.310 mo1%, the sample is set. The bulk electric performance is the best: pressure sensitive voltage gradient VlmA=435V/ mm, nonlinear coefficient alpha =42, leakage current IL=3 A, residual pressure ratio K=1.96, voltage sensitive voltage variation rate Delta VlmA/VlmA=4.89% after 8/20 and Mu s pulse current. With the decrease of Sn02 content, the pressure sensitive voltage gradient and nonlinear coefficient of ZnO varistor gradually decrease and leakage current increases gradually. When the Sn02 doping amount is 0.574mo1%, the sample has the best comprehensive electrical properties: the voltage sensitive voltage gradient VlmA=408V/mm, the nonlinear coefficient alpha =34, the leakage current IL=5 micron A, the residual pressure ratio K=2.02, the voltage sensitive voltage variation rate Delta VlmA/VlmA=9.13% after the tolerance 8/20 and the US pulse current, and the pressure sensitive voltage gradient of the ZnO varistor with the Sb203 doping amount increasing. When the nonlinear coefficient decreases first and then increases, the leakage current increases first and then decreases. When the Sb203 doping amount is 0.572 mo1%, the synthetic electrical performance of the sample is the best: the voltage sensitive voltage gradient VlmA=420V/mm, the nonlinear coefficient alpha =38, the leakage current IL=3 A, the residual pressure ratio K=2.01, and the voltage sensitive voltage change rate after the 8/20 micron s pulse current Delta VlmA/VlmA=7.58%. then VlmA/VlmA=7.58%. then will be followed by VlmA/VlmA=7.58%. next Mn2O3, NiO, Bi2O3, Co3O4 multiple oxide powders and Mn2O3, NiO, Bi2O3, Co3O4, SnO2 multiple oxide powders were introduced into the preparation process of ZnO pressure sensitive element, respectively. First, the compound powder of four (five) metal oxide composite powder was prepared, and then mixed with several other oxide additives and main materials. Under the suitable conditions, a piezresistor slice with a thickness of about 1.0mm and a diameter of about 8.8 mm was prepared. The microstructures and electrical properties of the piezresistor were tested and characterized. Compared with the varistors made from the traditional solid phase method, the size distribution of the components in the components of the Sol-Gel method was narrow and the additive elements were evenly distributed. The electric performance has also been greatly improved by the solid-phase method: the voltage gradient and nonlinear coefficient of the sample prepared by the Sol-Gel method are larger than the traditional sample, the leakage current is less than the traditional sample, and the flow ability of the 8/20 Mu s is also improved. When Mn2O3, NiO, Bi2O3, Co3O, SnO2 multiple oxide powders are introduced into the preparation process of the ZnO varistor, the pressure is obtained. The comprehensive electrical performance of the resistor is the best, the voltage sensitive voltage gradient VlmA=516V/mm, the nonlinear coefficient alpha =43, the leakage current IL=2 A, the residual pressure ratio K=1.78, and the voltage sensitive voltage variation rate Delta VlmA/VlmA=4.41%. after the tolerance 8/20 Mu s pulse current.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM54
【共引文獻(xiàn)】
相關(guān)期刊論文 前5條
1 陸平;10~220kV站用無(wú)間隙金屬氧化物避雷器的參數(shù)選擇[J];華中電力;2002年04期
2 周偉平;;組合式變壓器中肘型金屬氧化物避雷器運(yùn)用[J];建材與裝飾(中旬刊);2007年12期
3 程永發(fā);;110kV變電站典型設(shè)計(jì)應(yīng)用實(shí)例[J];農(nóng)村電氣化;2008年08期
4 毛啟靜;無(wú)間隙氧化鋅避雷器的選用[J];內(nèi)蒙古電力技術(shù);2003年01期
5 何寶龍;徐世山;郅嘯;劉文泉;;一起雷擊變電站引起的開(kāi)關(guān)柜燒損事故原因分析[J];青海電力;2008年02期
相關(guān)碩士學(xué)位論文 前3條
1 王永強(qiáng);真空開(kāi)關(guān)操作過(guò)電壓及其保護(hù)的研究[D];華北電力大學(xué);2002年
2 李慶玲;氧化鋅避雷器運(yùn)行狀況研究[D];蘭州理工大學(xué);2008年
3 孫春艷;發(fā)電廠變電所二次系統(tǒng)電源干擾抑制器的研制[D];長(zhǎng)沙理工大學(xué);2007年
,本文編號(hào):1839110
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1839110.html
最近更新
教材專著