直驅(qū)式風(fēng)電機(jī)組軸承振動(dòng)監(jiān)測與故障診斷
本文選題:直驅(qū)式風(fēng)電機(jī)組 + 主軸軸承。 參考:《太原理工大學(xué)》2014年碩士論文
【摘要】:由化石燃料消耗引起的重度霧霾天氣,給全國人民的生活帶來了嚴(yán)重的災(zāi)難。在此情況下,風(fēng)能作為新的可再生能源受到各國政府前所未有的重視。而目前大型風(fēng)力發(fā)電機(jī)組制造技術(shù)已經(jīng)趨向成熟,特別是直驅(qū)式風(fēng)電機(jī)組作為近年來風(fēng)電機(jī)組發(fā)展的最新趨勢,得到了廣泛的應(yīng)用。然而風(fēng)電機(jī)組受到運(yùn)行環(huán)境的制約,導(dǎo)致其故障率較高,影響其可靠性。 風(fēng)電機(jī)組中的軸承作為風(fēng)電機(jī)組傳動(dòng)系統(tǒng)的關(guān)鍵部件,其故障有各自的特點(diǎn)。主軸軸承由于其長時(shí)間受力不均勻而形成疲勞破壞;偏航和變槳軸承直接暴露在空氣環(huán)境中,容易受到惡劣環(huán)境氣流的影響,通常會在機(jī)艙和葉片上形成巨大的傾覆力矩,導(dǎo)致偏航和變槳軸承內(nèi)外圈和滾動(dòng)體上承受巨大的接觸應(yīng)力,造成軸承內(nèi)部變形,以及風(fēng)沙、塵土、潮濕等惡劣環(huán)境容易造成軸承磨損和銹蝕等故障。因此,對于風(fēng)電機(jī)組軸承的故障特點(diǎn)進(jìn)行監(jiān)測診斷,對于了解軸承故障產(chǎn)生的機(jī)理,對軸承進(jìn)行維護(hù)保養(yǎng),預(yù)防軸承的故障產(chǎn)生,減少引軸承故障引起的經(jīng)濟(jì)損失等都具有重要的實(shí)際意義。 本文從以下幾方面對風(fēng)電機(jī)組軸承進(jìn)行深入的研究: (1)通過風(fēng)電機(jī)組的運(yùn)行狀況和受力情況,分析了風(fēng)電機(jī)組軸承的結(jié)構(gòu)特征、工作狀況、故障類型及故障產(chǎn)生的原因。針對軸承故障的振動(dòng)機(jī)理、頻率特性和信號特征等,由此為基礎(chǔ)搭建了風(fēng)電軸承故障的振動(dòng)測試系統(tǒng)。 (2)針對風(fēng)電機(jī)組軸承的故障特征進(jìn)行診斷,其結(jié)論是:倒頻譜方法對于風(fēng)電軸承故障的主要特征頻率產(chǎn)生的調(diào)制邊頻成分具有明顯的識別作用。廣義倒頻譜對風(fēng)電軸承在強(qiáng)噪聲干擾情況下的故障特征能夠進(jìn)行有效的診斷。包絡(luò)譜方法通過解調(diào)分析來提取軸承故障的調(diào)制信息,對風(fēng)電軸承故障的特征頻率、諧波頻率和調(diào)制邊頻成分具有一定的辨識作用。 (3)通過對風(fēng)電機(jī)組主軸和偏航軸承的正常及故障兩種情況進(jìn)行對比分析,驗(yàn)證了上述分析方法的有效性。針對正常和故障軸承的運(yùn)行特性、振動(dòng)特點(diǎn)、信號特征、故障部位等情況進(jìn)行對比,得出了如下結(jié)論:倒頻譜方法和包絡(luò)譜方法在主軸和偏航軸承故障診斷中都具有一定的局限性,在主軸軸承故障診斷中倒頻譜方法比包絡(luò)譜方法顯示結(jié)果更加清晰和準(zhǔn)確;在偏航軸承故障診斷中包絡(luò)譜方法比倒頻譜方法的功能更加強(qiáng)大。
[Abstract]:The severe fog weather caused by fossil fuel consumption brings a serious disaster to the life of the people in the whole country . In this case , wind energy has been paid more and more attention by governments as a new renewable energy source . At present , the manufacturing technology of large wind generating set has become mature , especially direct drive wind turbine set as the latest trend of the development of wind power unit in recent years , and has been widely used . However , wind turbine unit is restricted by operating environment , which causes its failure rate to be high and its reliability is affected .
As the key parts of the transmission system of wind turbine , the bearings in the wind turbine unit have their own characteristics .
The yawing and pitch bearing are directly exposed in the air environment and can be easily influenced by the adverse environmental air flow . Generally , huge overturning moment is formed on the nacelle and the blade , which causes great contact stress on the inner and outer races and rolling bodies of the yaw and pitch bearing , which causes the bearing to wear and rust . Therefore , the bearing is maintained and maintained , the failure of the bearing is prevented , and the economic loss caused by the bearing failure is reduced .
In this paper , we study the bearing of wind turbine unit in the following aspects :
( 1 ) The structural characteristics , working conditions , fault types and the cause of failure of the bearing of wind turbine are analyzed through the operating conditions and stress conditions of the wind turbine unit . The vibration mechanism , frequency characteristic and signal characteristics of the bearing fault are analyzed , and the vibration test system for the fault of the wind power bearing is built on the basis of the analysis .
( 2 ) The fault characteristic of wind turbine bearing is diagnosed . The conclusion is that the cepstrum method has obvious recognition effect on the main characteristic frequency of wind power bearing fault . The generalized cepstrum method can diagnose the fault characteristic of wind power bearing under the condition of strong noise interference . The envelope spectrum method extracts the modulation information of bearing fault by demodulation analysis , and has certain identification effect on the characteristic frequency , harmonic frequency and modulation edge frequency component of the wind power bearing fault .
( 3 ) By comparing and analyzing the normal and fault conditions of the main shaft and the yaw bearing of the wind turbine unit , the effectiveness of the analysis method is verified . According to the operating characteristics , the vibration characteristics , the signal characteristics and the fault location of the normal and fault bearings , the following conclusions are obtained : the cepstrum method and the envelope spectrum method have certain limitations in the fault diagnosis of the main shaft and the yaw bearing , and the cepstrum method in the fault diagnosis of the main shaft bearing is clearer and more accurate than the envelope spectrum method .
The envelope spectrum method is more powerful than cepstrum method in the fault diagnosis of yaw bearing .
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李媛媛,葉亞飛;風(fēng)力發(fā)電機(jī)專用軸承[J];軸承;2004年02期
2 安學(xué)利;蔣東翔;陳杰;劉超;;基于ITD和LS-SVM的風(fēng)力發(fā)電機(jī)組軸承故障診斷[J];電力自動(dòng)化設(shè)備;2011年09期
3 張倩;張志新;王亮;;基于振動(dòng)測試的滾動(dòng)軸承故障診斷技術(shù)進(jìn)展[J];風(fēng)機(jī)技術(shù);2012年01期
4 蘇連成;李興林;王文龍;李小俚;陳國建;;中國北方地區(qū)風(fēng)電軸承故障調(diào)查與分析[J];軸承;2013年11期
5 彭華東;陳曉清;任明;楊代勇;董明;;風(fēng)電機(jī)組故障智能診斷技術(shù)及系統(tǒng)研究[J];電網(wǎng)與清潔能源;2011年02期
6 陳長征;梁樹民;;兆瓦級風(fēng)力發(fā)電機(jī)故障診斷[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2009年03期
7 龍泉;劉永前;楊勇平;;狀態(tài)監(jiān)測與故障診斷在風(fēng)電機(jī)組上的應(yīng)用[J];現(xiàn)代電力;2008年06期
8 時(shí)軼;崔新維;;解調(diào)分析在風(fēng)力發(fā)電機(jī)上的運(yùn)用[J];新疆農(nóng)機(jī)化;2006年05期
9 張照煌;丁顯;劉曼;曾菊瑛;;基于小波變換的風(fēng)電機(jī)組傳動(dòng)系統(tǒng)故障診斷與分析[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2011年S1期
10 唐新安;謝志明;王哲;吳金強(qiáng);;風(fēng)力機(jī)齒輪箱故障診斷[J];噪聲與振動(dòng)控制;2007年01期
,本文編號:1831995
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1831995.html