天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

基于極限學(xué)習(xí)機與概率神經(jīng)網(wǎng)絡(luò)的接地網(wǎng)故障診斷

發(fā)布時間:2018-04-25 12:06

  本文選題:接地網(wǎng) + 故障診斷; 參考:《湖南大學(xué)》2014年碩士論文


【摘要】:發(fā)、變電站接地網(wǎng)是電力系統(tǒng)中不可或缺的重要組成部分,接地系統(tǒng)的工作狀態(tài)直接影響到工作人員的安全、電力系統(tǒng)的穩(wěn)定運行和電氣設(shè)備的正常工作。我國主要采用碳鋼作為接地體,由于長年埋于地下,接地網(wǎng)導(dǎo)體的腐蝕造成接地網(wǎng)電氣性能參數(shù)惡化,嚴(yán)重時直接危及電力系統(tǒng)安全運行,因此,研究接地網(wǎng)故障診斷具有重要意義。鑒于此,本文對接地網(wǎng)模型的構(gòu)建、基于極限學(xué)習(xí)機的接地網(wǎng)故障定位方法以及應(yīng)用概率神經(jīng)網(wǎng)絡(luò)的接地網(wǎng)腐蝕程度的識別等進行了較深入的研究。 本文采用純電阻線性網(wǎng)絡(luò)的接地網(wǎng)穩(wěn)態(tài)模型,提出了基于RBF神經(jīng)網(wǎng)絡(luò)的接地網(wǎng)故障診斷方法。以支路斷裂時的可及節(jié)點電壓為訓(xùn)練樣本對網(wǎng)絡(luò)進行訓(xùn)練,只需要把待診斷接地網(wǎng)的可及節(jié)點電壓送入訓(xùn)練好的網(wǎng)絡(luò)機進行診斷,根據(jù)輸出結(jié)果即可定位斷裂支路。仿真結(jié)果表明,此方法在定位接地網(wǎng)斷裂支路上是可行的。在此基礎(chǔ)上,將極限學(xué)習(xí)機引入接地網(wǎng)故障診斷。對診斷結(jié)果進行分析可知此方法解決了采用RBF神經(jīng)網(wǎng)絡(luò)的單故障診斷結(jié)果誤差較大的問題,且受故障位置與激勵位置的影響較小,是一種診斷準(zhǔn)確率高且穩(wěn)定性強的方法。同時,考慮到雙故障時訓(xùn)練樣本的龐大與輸入時的誤差,對極限學(xué)習(xí)機進行了改進,即通過觀察識別率,排序最有可能的幾條故障支路,并引入白噪聲擾動。診斷結(jié)果表明,改進后的極限學(xué)習(xí)機不需要獲取龐大雙故障訓(xùn)練樣本,,僅利用單故障訓(xùn)練樣本就能較為準(zhǔn)確地定位雙斷點故障,大大提高了診斷效率,并且對輸入誤差具有較大的相容度。 針對接地網(wǎng)故障模式較多分類困難的問題,提出了結(jié)合主元分析(PCA)與概率神經(jīng)網(wǎng)絡(luò)(PNN)的接地網(wǎng)故障診斷方法。把不同故障模式下的接地網(wǎng)可及節(jié)點電壓分別先后送入PCA與PNN進行網(wǎng)絡(luò)訓(xùn)練,根據(jù)PNN的輸出結(jié)果來識別接地網(wǎng)的故障模式。其結(jié)果與利用BP神經(jīng)網(wǎng)絡(luò)進行接地網(wǎng)的腐蝕程度識別的結(jié)果相比較,表明此方法具有更高的故障識別率,更少的收斂步數(shù)與更短的訓(xùn)練時間,是一種快速、準(zhǔn)確的接地網(wǎng)故障識別方法。
[Abstract]:Substation grounding network is an indispensable part of power system. The working state of grounding system directly affects the safety of staff, the stable operation of power system and the normal operation of electrical equipment. Carbon steel is mainly used as grounding material in China. The corrosion of grounding grid conductors results in the deterioration of electrical performance parameters of grounding grid, which directly endangers the safe operation of power system. It is of great significance to study the fault diagnosis of grounding grid. In view of this, the construction of grounding grid model, the fault location method of grounding grid based on ultimate learning machine and the identification of corrosion degree of grounding grid based on probabilistic neural network are deeply studied in this paper. In this paper, a fault diagnosis method of grounding grid based on RBF neural network is presented, which is based on the steady-state model of pure resistive linear network. When the reachable node voltage is used as the training sample to train the network, only the reachable node voltage of the grounding network to be diagnosed is sent to the trained network machine for diagnosis, and the broken branch can be located according to the output results. The simulation results show that this method is feasible in locating the fault branch of grounding grid. On this basis, the ultimate learning machine is introduced into fault diagnosis of grounding grid. The analysis of diagnosis results shows that this method solves the problem of large error in single fault diagnosis using RBF neural network, and is less affected by fault location and excitation position. It is a method with high diagnostic accuracy and strong stability. At the same time, considering the large number of training samples and the error of input, the paper improves the extreme learning machine, that is, by observing the recognition rate, ranking the most likely fault branches, and introducing white noise disturbance. The diagnosis results show that the improved extreme learning machine does not need to obtain a large number of double fault training samples, and the single fault training sample can be used to locate the double breakpoint fault accurately, which greatly improves the diagnosis efficiency. And the input error has a large degree of compatibility. In order to solve the problem that the fault pattern of grounding grid is more difficult to classify, a fault diagnosis method of grounding grid based on principal component analysis (PCA) and probabilistic neural network (PNN) is proposed. The voltages of reachable nodes in different fault modes are fed into PCA and PNN respectively for network training, and the fault modes of grounding grids are identified according to the output results of PNN. The results show that the method has higher fault identification rate, less convergence steps and shorter training time, and it is a kind of fast method, compared with the result of using BP neural network to identify the corrosion degree of grounding grid. Accurate fault identification method of grounding grid.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM862

【參考文獻】

相關(guān)期刊論文 前10條

1 彭敏放;沈美娥;何怡剛;孫義闖;;應(yīng)用RBF網(wǎng)絡(luò)和D-S證據(jù)推理的模擬電路診斷(英文)[J];電工技術(shù)學(xué)報;2009年08期

2 周欣榮,朱建良;以一種神經(jīng)網(wǎng)絡(luò)模型實現(xiàn)模擬電路故障診斷[J];哈爾濱電工學(xué)院學(xué)報;1993年02期

3 王培利;變電站接地網(wǎng)存在的問題及對策[J];山西電力技術(shù);1996年03期

4 肖新華,劉華,陳先祿,張曉玲;接地網(wǎng)腐蝕和斷點的診斷理論分析[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2001年03期

5 胡少中;接地網(wǎng)改造中的幾個問題[J];福建電力與電工;1996年01期

6 林偉,王政源;變電站接地網(wǎng)存在問題的分析與對策[J];廣東電力;1998年05期

7 張曉玲,陳先祿;優(yōu)化技術(shù)在發(fā)、變電所接地網(wǎng)故障診斷中的應(yīng)用[J];高電壓技術(shù);2000年04期

8 劉慶珍,蔡金錠;電力系統(tǒng)接地網(wǎng)故障的無傷檢測方法[J];高電壓技術(shù);2003年06期

9 劉健;王建新;王森;;測量誤差對接地網(wǎng)故障診斷影響的分析[J];高電壓技術(shù);2006年04期

10 劉健;王樹奇;李志忠;王森;;接地網(wǎng)腐蝕故障診斷的可測性研究[J];高電壓技術(shù);2008年01期

相關(guān)博士學(xué)位論文 前1條

1 王樹奇;基于分層約簡模型的接地網(wǎng)腐蝕故障診斷研究[D];西安科技大學(xué);2009年



本文編號:1801236

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1801236.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1c191***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
女同伦理国产精品久久久| 亚洲中文字幕剧情在线播放| 久久中文字幕中文字幕中文| 日本高清视频在线观看不卡| 99久久精品国产日本| 真实国产乱子伦对白视频不卡| 国产一区日韩二区欧美| 国产对白老熟女正在播放| 婷婷色香五月综合激激情| 91爽人人爽人人插人人爽| 日本av在线不卡一区| 91久久精品中文内射| 丝袜av一区二区三区四区五区| 欧美午夜国产在线观看| 亚洲一区二区三区三区| 亚洲国产性感美女视频| 男女午夜福利院在线观看| 少妇被粗大进猛进出处故事| 福利视频一区二区在线| 国产免费操美女逼视频| 97人妻精品一区二区三区免| 男人的天堂的视频东京热| 日韩av生活片一区二区三区| 国产一区在线免费国产一区| 九九热这里只有免费精品| 国产精品内射视频免费| 亚洲中文字幕视频一区二区| 国产超薄黑色肉色丝袜| 一区二区三区18禁看| 亚洲深夜精品福利一区| 国产精品欧美激情在线播放| 日本大学生精油按摩在线观看| 精品熟女少妇av免费久久野外| 免费黄片视频美女一区| 国产又粗又猛又大爽又黄| av在线免费观看一区二区三区| 色狠狠一区二区三区香蕉蜜桃| 国产三级欧美三级日韩三级| 丝袜人妻夜夜爽一区二区三区| 亚洲欧美天堂精品在线| 日本精品中文字幕人妻|