多元能源發(fā)電系統(tǒng)頻率波動(dòng)仿真算法及實(shí)現(xiàn)
本文選題:多元能源 + 風(fēng)電并網(wǎng)。 參考:《華北電力大學(xué)》2014年碩士論文
【摘要】:化石能源危機(jī)、全球氣候變暖以及環(huán)境污染是當(dāng)今世界各國共同關(guān)注的焦點(diǎn)。不斷尋找能夠代替化石能源的清潔能源,改變能源結(jié)構(gòu),是各國應(yīng)對(duì)這些問題的重要戰(zhàn)略途徑。其中,風(fēng)力、光伏等新能源發(fā)電正成為當(dāng)前新能源開發(fā)利用的主要方式。隨著新能源發(fā)并網(wǎng)容量的不斷增加,電力系統(tǒng)的發(fā)電方式呈多元化發(fā)展。然而大規(guī)模新能源并網(wǎng)給電力系統(tǒng)頻率控制帶來了新的挑戰(zhàn)。 與傳統(tǒng)能源發(fā)電相比,風(fēng)電、光伏等清潔能源發(fā)電的主要特點(diǎn)就是一次能源不可控導(dǎo)致的隨機(jī)波動(dòng)性和間歇性。隨著新能源發(fā)電滲透率逐漸增加,傳統(tǒng)電力系統(tǒng)中調(diào)整發(fā)電量以匹配負(fù)荷變化的頻率控制模式已難以滿足系統(tǒng)頻率穩(wěn)定要求。加之核能發(fā)電投資大、回報(bào)率高,通常也不參與頻率控制,這更加重了電力系統(tǒng)頻率控制的難度。因此,在傳統(tǒng)能源調(diào)控方式有限的情況下,有必要提高新能源參與系統(tǒng)頻率控制的能力。 本文根據(jù)各國風(fēng)電并網(wǎng)導(dǎo)則對(duì)風(fēng)電并網(wǎng)調(diào)頻提出的要求,重點(diǎn)研究了國內(nèi)外現(xiàn)有風(fēng)力發(fā)電機(jī)控制技術(shù),并探索風(fēng)電參與系統(tǒng)頻率控制的方法,與火電、水電構(gòu)成多元能源頻率控制系統(tǒng),利用準(zhǔn)穩(wěn)態(tài)法建立各類型機(jī)組多元能源頻率控制模型,并利用MATLAB仿真平臺(tái)建立了專門的中長期時(shí)間尺度系統(tǒng)頻率波動(dòng)仿真系統(tǒng),以深入研究影響電力系統(tǒng)頻率控制的各種因素。 論文首先介紹了多元能源發(fā)電系統(tǒng)的發(fā)展現(xiàn)狀以及進(jìn)行動(dòng)態(tài)頻率仿真問題的需求,就頻率受到擾動(dòng)后動(dòng)態(tài)變化過程分析火電機(jī)組、水電機(jī)組和核電機(jī)組的頻率控制特性,隨后詳述了風(fēng)電場(chǎng)參與系統(tǒng)頻率控制方法。根據(jù)各類型機(jī)組的頻率控制特性建立基于準(zhǔn)穩(wěn)態(tài)法的頻率控制模型,結(jié)合頻率控制仿真中功能需求,利用MATLAB仿真平臺(tái)建立了中長期時(shí)間尺度系統(tǒng)頻率波動(dòng)仿真系統(tǒng),從而細(xì)化分析影響多元能源發(fā)電系統(tǒng)頻率控制質(zhì)量的因素:多區(qū)域協(xié)調(diào)頻率控制、多元能源頻率控制和備用調(diào)整容量。本文通過建立三個(gè)區(qū)域的多元能源發(fā)電系統(tǒng),從影響頻率控制的不同因素分別考慮,對(duì)比分析多元能源電力系統(tǒng)的頻率控制仿真效果、各機(jī)組出力情況和頻率控制指標(biāo)。仿真算例表明本文所提出的仿真系統(tǒng)能夠進(jìn)行中長期時(shí)間尺度系統(tǒng)頻率波動(dòng)仿真,對(duì)于研究頻率控制影響因素具有顯著效果,且具有計(jì)算精度高,計(jì)算速度快等特點(diǎn),能滿足實(shí)際工程應(yīng)用的要求。
[Abstract]:The crisis of fossil energy, global warming and environmental pollution are the focus of the world. To find clean energy instead of fossil energy and to change energy structure is an important strategic approach for countries to deal with these problems. Among them, wind power, photovoltaic and other new energy generation is becoming the main way of development and utilization of new energy. With the continuous increase of new energy generation and grid capacity, the power system power generation mode has diversified development. However, the power system frequency control is challenged by large-scale new energy grid connection. Compared with traditional energy generation, the main characteristics of clean energy generation such as wind power, photovoltaic are the random volatility and intermittency caused by the uncontrollable primary energy. With the increase of new energy generation permeability, it is difficult to meet the requirements of frequency stability in the traditional frequency control mode of power system, which adjusts the power generation to match the load change. In addition, nuclear power generation investment, high rate of return, usually do not participate in frequency control, which makes it more difficult to control the power system frequency. Therefore, it is necessary to improve the ability of new energy to participate in system frequency control. In this paper, according to the requirements of wind power connection and frequency modulation for wind power connection in various countries, this paper mainly studies the existing wind turbine control technology at home and abroad, and explores the methods of wind power participating in system frequency control, and thermal power. The multi-energy frequency control system is composed of hydropower, the multi-energy frequency control model of various types of units is established by using quasi-steady state method, and a special simulation system of medium and long-term time-scale system frequency fluctuation is established by using MATLAB simulation platform. In order to study the power system frequency control factors. Firstly, the paper introduces the development status of multi-energy power generation system and the demand of dynamic frequency simulation, and analyzes the frequency control characteristics of thermal power unit, hydropower unit and nuclear power unit after frequency disturbance. Then, the method of frequency control for wind farm is described in detail. According to the frequency control characteristics of various types of units, a frequency control model based on quasi steady state method is established. According to the functional requirements of frequency control simulation, a medium and long term time-scale system frequency fluctuation simulation system is established by using MATLAB simulation platform. The factors that affect the frequency control quality of multi-energy generation system are analyzed in detail, such as multi-region coordinated frequency control, multi-energy frequency control and reserve adjusting capacity. In this paper, by establishing the multi-energy power generation system in three regions, considering the different factors that affect the frequency control, the simulation results of the frequency control of the multi-energy power system, the output of each unit and the frequency control index are compared and analyzed. The simulation example shows that the proposed simulation system can simulate the frequency fluctuation of the medium and long term time-scale system, which has remarkable effect on the study of the influencing factors of frequency control, and has the characteristics of high calculation precision and fast calculation speed. Can meet the requirements of practical engineering applications.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陸超,唐義良,謝小榮,崔文進(jìn);仿真軟件MATLABPSB與PSASP模型及仿真分析[J];電力系統(tǒng)自動(dòng)化;2000年09期
2 喬穎;魯宗相;;考慮電網(wǎng)約束的風(fēng)電場(chǎng)自動(dòng)有功控制[J];電力系統(tǒng)自動(dòng)化;2009年22期
3 林今;孫元章;P.SФRENSEN;李國杰;程林;黎雄;;基于頻域的風(fēng)電場(chǎng)功率波動(dòng)仿真 (一)模型及分析技術(shù)[J];電力系統(tǒng)自動(dòng)化;2011年04期
4 于大洋;韓學(xué)山;梁軍;宋曙光;;基于NASA地球觀測(cè)數(shù)據(jù)庫的區(qū)域風(fēng)電功率波動(dòng)特性分析[J];電力系統(tǒng)自動(dòng)化;2011年05期
5 白永祥;房大中;朱長勝;;內(nèi)蒙古電網(wǎng)風(fēng)電場(chǎng)調(diào)度管理技術(shù)支持系統(tǒng)設(shè)計(jì)與應(yīng)用[J];電力系統(tǒng)自動(dòng)化;2011年07期
6 李靜坤;姚秀萍;曠瑞明;張鵬飛;李長軍;張彥軍;;新疆風(fēng)電場(chǎng)有功功率控制策略與實(shí)現(xiàn)[J];電力系統(tǒng)自動(dòng)化;2011年24期
7 楊衛(wèi)東,徐政,韓禎祥;NETOMAC在直流輸電系統(tǒng)仿真研究中的應(yīng)用[J];電力自動(dòng)化設(shè)備;2001年04期
8 李廣凱,李庚銀;電力系統(tǒng)仿真軟件綜述[J];電氣電子教學(xué)學(xué)報(bào);2005年03期
9 林良真,葉林;電磁暫態(tài)分析軟件包PSCAD/EMTDC[J];電網(wǎng)技術(shù);2000年01期
10 孫華東;湯涌;馬世英;;電力系統(tǒng)穩(wěn)定的定義與分類述評(píng)[J];電網(wǎng)技術(shù);2006年17期
相關(guān)博士學(xué)位論文 前1條
1 李雪峰;互聯(lián)電力系統(tǒng)的AGC容量需求和控制策略研究[D];大連理工大學(xué);2010年
,本文編號(hào):1792087
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1792087.html