磷酸鈦鋁鋰的制備及其在鋰空氣二次電池中的應(yīng)用
發(fā)布時間:2018-04-20 03:19
本文選題:鋰離子固體電解質(zhì) + 微晶玻璃。 參考:《哈爾濱工業(yè)大學(xué)》2014年碩士論文
【摘要】:鋰空氣電池由于具有較高的能量密度而受到人們的關(guān)注,而傳統(tǒng)的鋰空氣電池由于僅僅采用有機電解液,導(dǎo)致負極金屬鋰極易受到空氣中水及二氧化碳的腐蝕,限制了鋰空氣電池的循環(huán)性能及穩(wěn)定性能。以固體電解質(zhì)制備的新型鋰空氣電池成為改善鋰空氣電池循環(huán)性能的突破。因此,制備具有高離子電導(dǎo)率的固體電解質(zhì)成為提高鋰空氣電池性能的關(guān)鍵。 本文選取LATP(Li1.3Al0.3Ti1.7(PO4)3)鋰離子固體電解質(zhì)為研究對象,探討了不同制備工藝,添加劑的摻雜等對LATP鋰離子固體電解質(zhì)離子電導(dǎo)率、機械性能等的影響,,確定了制備LATP鋰離子固體電解質(zhì)的最佳化學(xué)計量比及工藝條件;另外,還以LATP固體電解質(zhì)組裝了鋰空氣電池,確定了鋰空氣電池的結(jié)構(gòu),并研究了鋰空氣電池的循環(huán)性能及穩(wěn)定性能。 采用高溫固相法制備LATP鋰離子固體電解質(zhì)的研究發(fā)現(xiàn),磷酸鋰的摻雜對LATP固體電解質(zhì)的離子電導(dǎo)率的改善不明顯,而二氧化硅的摻雜可有效提高LATP固體電解質(zhì)的離子電導(dǎo)率,在Li1.3+yTi1.7Al0.3SiyP3-yO12(y=0、0.1、0.2、0.3)中,當(dāng)二氧化硅的摻雜量為y=0.1時,制備的LATP固體電解質(zhì)的室溫離子電導(dǎo)率最高,可達1.1×10-4S·cm-1。采用整體析晶法制備LATP微晶玻璃時,硼酸的摻雜可有效降低LATP玻璃的熔融溫度,改善LATP固體電解質(zhì)的離子電導(dǎo)率,當(dāng)硼酸的摻雜量為70%時,制備的LATP固體電解質(zhì)的室溫離子電導(dǎo)率最高,可達9.91×10-5S·cm-1。 以LATP微晶玻璃為鋰離子固體電解質(zhì)組裝鋰空氣電池發(fā)現(xiàn),采用10mol/L的氯化鋰與0.1mol/L的氫氧化鋰混合溶液為水相,制備的鋰空氣電池的循環(huán)性能及穩(wěn)定性能較好,當(dāng)采取限制容量為1mAh的方式充放電時,循環(huán)5次未出現(xiàn)明顯電壓衰減。 對LATP的差熱分析曲線進行了分析,發(fā)現(xiàn)Li1.4Ti1.7Al0.3Si0.1P2.9O12微晶玻璃的析晶活化能為331.146KJ/mol,晶體生長指數(shù)為3,表明Li1.4Ti1.7Al0.3Si0.1P2.9O12玻璃的成核以三維體積成核為主。
[Abstract]:Lithium air batteries have attracted much attention because of their high energy density. Traditional lithium air batteries are easily corroded by water and carbon dioxide in the air due to the use of only organic electrolyte. The cycle performance and stability of lithium air battery are limited. A new type of lithium air battery made of solid electrolyte has become a breakthrough in improving the cycle performance of lithium air battery. Therefore, the preparation of solid electrolyte with high ionic conductivity is the key to improve the performance of lithium air battery. In this paper, Li-ion solid electrolyte Li1.3Al0.3Ti1.7 (PO4) 3) was chosen as the research object. The effects of different preparation process and additive doping on the ionic conductivity and mechanical properties of LATP lithium ion solid electrolyte were discussed. The optimum stoichiometric ratio and process conditions for the preparation of LATP lithium ion solid electrolyte were determined. In addition, the lithium air battery was assembled from LATP solid electrolyte, and the structure of the lithium air battery was determined. The cycle performance and stability of lithium air battery were studied. The study on the preparation of LATP lithium ion solid electrolyte by high temperature solid state method shows that the ionic conductivity of LATP solid electrolyte is not obviously improved by lithium phosphate doping, while the ionic conductivity of LATP solid electrolyte can be improved effectively by doping silicon dioxide. In Li1.3 yTi1.7Al0.3SiyP3-yO12O0.2cm3), when the doping amount of Sio _ 2 is y = 0.1, the ionic conductivity of the prepared LATP solid electrolyte is the highest at room temperature, up to 1.1 脳 10 ~ (-4) S / cm ~ (-1). Boric acid doping can effectively reduce the melting temperature of LATP glass and improve the ionic conductivity of LATP solid electrolyte when the boric acid doping is used to prepare LATP glass-ceramics by monolithic crystallization. The prepared LATP solid electrolyte has the highest ionic conductivity at room temperature, reaching 9.91 脳 10 ~ (-5) S cm ~ (-1). Using LATP glass-ceramics as lithium ion solid electrolyte to assemble the lithium-air battery, it was found that the lithium-air battery prepared by using the mixed solution of lithium chloride of 10mol/L and lithium hydroxide of 0.1mol/L as aqueous phase has good cycling performance and stable performance. When charging and discharging with limited capacity of 1mAh, there is no obvious voltage attenuation for 5 cycles. The DTA curves of LATP were analyzed. It was found that the activation energy of crystallization of Li1.4Ti1.7Al0.3Si0.1P2.9O12 glass-ceramics was 331.146 KJ / mol, and the crystal growth index was 3, which indicated that the nucleation of Li1.4Ti1.7Al0.3Si0.1P2.9O12 glass was dominated by three-dimensional volume nucleation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM911.41
【參考文獻】
相關(guān)期刊論文 前7條
1 崔啟征;董相廷;于偉利;王進賢;王慧茹;楊曉峰;于曉輝;;靜電紡絲技術(shù)制備無機物納米纖維的最新研究進展[J];稀有金屬材料與工程;2006年07期
2 鄭洪河;曲群婷;劉云偉;徐仲榆;;無機固體電解質(zhì)用于鋰及鋰離子電池研究進展——Ⅰ鋰陶瓷電解質(zhì)[J];電源技術(shù);2007年05期
3 陳文娟;差熱分析在微晶玻璃晶化工藝中的應(yīng)用[J];河南建材;2003年03期
4 任寧;張建軍;;熱分析動力學(xué)數(shù)據(jù)處理方法的研究進展[J];化學(xué)進展;2006年04期
5 夏蘭;李素麗;艾新平;楊漢西;;鋰離子電池的安全性技術(shù)[J];化學(xué)進展;2011年Z1期
6 陶巍;李鵬飛;王海山;;靜電紡絲制備有序納米纖維的研究進展[J];機電技術(shù);2011年02期
7 陸振榮;熱分析動力學(xué)的新進展[J];無機化學(xué)學(xué)報;1998年02期
本文編號:1776009
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1776009.html
最近更新
教材專著