電動(dòng)汽車充電站功率需求建模
發(fā)布時(shí)間:2018-04-14 05:23
本文選題:電動(dòng)出租車 + 電動(dòng)公交車。 參考:《華北電力大學(xué)》2014年碩士論文
【摘要】:在科技部制定的電動(dòng)汽車科技發(fā)展“十二五”規(guī)劃中明確指出電動(dòng)汽車在未來數(shù)年內(nèi)將實(shí)現(xiàn)大規(guī)模運(yùn)營,因而電動(dòng)汽車的充電功率需求將對(duì)電網(wǎng)帶來一定影響。因此在電動(dòng)汽車規(guī)模化運(yùn)行之前,必須提前開展電動(dòng)汽車充電功率需求的研究和預(yù)測(cè)。對(duì)電動(dòng)汽車充電站功率需求的研究是引導(dǎo)電動(dòng)汽車進(jìn)行有序充電的基礎(chǔ),對(duì)于以后電動(dòng)汽車的推廣和應(yīng)用具有重大的意義。 電動(dòng)汽車按照使用需求分為不同類型,研究電動(dòng)汽車的充電功率需求應(yīng)該按照不同類型及其對(duì)應(yīng)的充電模式進(jìn)行分析。本文提出一種基于實(shí)際運(yùn)行規(guī)律的電動(dòng)公交車充電站功率需求模型以及電動(dòng)出租車充電站的充電功率需求模型。對(duì)于行駛行為較為規(guī)律的電動(dòng)公交車,統(tǒng)計(jì)了實(shí)際電動(dòng)公交車充電站運(yùn)行數(shù)據(jù),從中分析出交通情況、車速、載客量等因素影響下的SOE0和進(jìn)站時(shí)間,并建立對(duì)應(yīng)的計(jì)算模型。對(duì)于電動(dòng)出租車運(yùn)行規(guī)律并不明顯的情況下,基于隨機(jī)過程中的泊松過程得到充電開始時(shí)間的隨機(jī)分布序列,利用電池SOC0與充電服務(wù)時(shí)間之間的內(nèi)在關(guān)系估算電動(dòng)出租車需要的充電服務(wù)時(shí)間。在建立了電動(dòng)汽車充電功率影響因素計(jì)算模型之后,結(jié)合各自電池的充電功率曲線建立起充電站的充電功率需求模型。最后利用本文提出的建模方法,以北京北土城電動(dòng)公交車充電站及深圳福田電動(dòng)出租車充電站相關(guān)數(shù)據(jù)為算例,進(jìn)行了仿真分析,并對(duì)預(yù)測(cè)結(jié)果進(jìn)行對(duì)比分析,證明了模型的有效性。 本文還進(jìn)一步提出了一種基于ARMA時(shí)間序列算法的電動(dòng)汽車充電站運(yùn)行狀態(tài)預(yù)測(cè)模型及充電功率需求計(jì)算方法。對(duì)于建模的過程,首先定義了充電樁的5種狀態(tài)來描述電動(dòng)汽車充電站的運(yùn)行規(guī)律,并利用ARMA算法理論基礎(chǔ)建立充電站運(yùn)行狀態(tài)預(yù)測(cè)模型。其次,以延慶電動(dòng)出租車充電站基礎(chǔ)運(yùn)行數(shù)據(jù)為例,對(duì)預(yù)測(cè)過程做出了詳細(xì)說明,并對(duì)預(yù)測(cè)模型進(jìn)行誤差分析和模型評(píng)價(jià),以此驗(yàn)證模型的可靠性。最后,利用正在充電狀態(tài)時(shí)間序列及充電樁的額定充電功率計(jì)算得到了充電站預(yù)測(cè)的充電功率曲線,與實(shí)際充電功率曲線進(jìn)行了對(duì)比分析證明了模型的有效性和適應(yīng)性。 本文研究分析了電動(dòng)汽車的充電功率需求,從實(shí)際運(yùn)行規(guī)律和預(yù)測(cè)算法兩個(gè)方面分別建立電動(dòng)汽車充電站功率需求模型。本文的方法對(duì)成熟運(yùn)營的充電站以及只有短期歷史數(shù)據(jù)的充電站都具有一定的適用性。充電功率需求建模為電動(dòng)汽車對(duì)電網(wǎng)影響的衡量提供重要的參考,同時(shí)為電動(dòng)汽車有序充電起到一定的指導(dǎo)作用。
[Abstract]:In the 12th Five-Year Plan for the Development of Electric vehicle Science and Technology made by the Ministry of Science and Technology, it is clearly pointed out that the electric vehicle will be operated on a large scale in the next few years, so the demand for charging power of the electric vehicle will have a certain impact on the power grid.Therefore, the research and prediction of electric vehicle charging power demand must be carried out in advance before the scale operation of electric vehicle.The research on the power demand of electric vehicle charging station is the basis of leading electric vehicle to charge in order, which is of great significance to the popularization and application of electric vehicle in the future.Electric vehicles can be divided into different types according to their use requirements. The research on the charging power demand of electric vehicles should be based on different types and their corresponding charging modes.This paper presents a power demand model for electric bus charging station and a charging power demand model for electric taxi charging station based on actual operation law.For the electric bus with regular driving behavior, the operation data of the charging station of the actual electric bus are counted, and the SOE0 and the incoming time under the influence of the traffic situation, speed, passenger load and other factors are analyzed, and the corresponding calculation model is established.Under the condition that the running rule of electric taxi is not obvious, the random distribution sequence of charging start time is obtained based on the Poisson process in the random process.The relationship between battery SOC0 and charging service time is used to estimate the charging service time of electric taxi.After the calculation model of the factors influencing the charging power of the electric vehicle is established, the charging power demand model of the charging station is established according to the charging power curve of the respective batteries.Finally, using the modeling method proposed in this paper, taking the Beijing Beitucheng electric bus charging station and Shenzhen Futian electric taxi charging station as examples, the simulation analysis is carried out, and the prediction results are compared and analyzed.The validity of the model is proved.Furthermore, this paper presents a ARMA time series algorithm based on the electric vehicle charging station operating state prediction model and charging power demand calculation method.For the modeling process, five states of charging pile are defined to describe the operation law of charging station of electric vehicle, and the prediction model of operation state of charging station is established on the basis of ARMA algorithm theory.Secondly, taking the basic operation data of Yanqing electric taxi charging station as an example, the prediction process is explained in detail, and the error analysis and model evaluation of the prediction model are carried out to verify the reliability of the model.Finally, the predicted charging power curve of the charging station is obtained by using the time series of the charging state and the rated charging power of the charging pile. The comparison with the actual charging power curve proves the validity and adaptability of the model.In this paper, the charging power demand of electric vehicle is studied and analyzed, and the power demand model of charging station of electric vehicle is established from two aspects of actual operation law and prediction algorithm.The method proposed in this paper is applicable to both mature charging stations and charging stations with only short-term historical data.The modeling of charging power demand provides an important reference for measuring the impact of electric vehicles on the power grid and plays a guiding role in the orderly charging of electric vehicles.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U469.72;TM910.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 寇凌峰;劉自發(fā);周歡;;區(qū)域電動(dòng)汽車充電站規(guī)劃的模型與算法[J];現(xiàn)代電力;2010年04期
2 徐虹;賀鵬;艾欣;;電動(dòng)汽車充電功率需求分析模型研究綜述[J];現(xiàn)代電力;2012年03期
3 李瑞瑩;康銳;;基于ARMA模型的故障率預(yù)測(cè)方法研究[J];系統(tǒng)工程與電子技術(shù);2008年08期
4 田立亭;張明霞;汪奐伶;;電動(dòng)汽車對(duì)電網(wǎng)影響的評(píng)估和解決方案[J];中國電機(jī)工程學(xué)報(bào);2012年31期
,本文編號(hào):1747900
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1747900.html
最近更新
教材專著