異步電機(jī)矢量控制變頻技術(shù)的研究與實(shí)現(xiàn)
本文選題:異步電機(jī) + 矢量控制。 參考:《大連理工大學(xué)》2014年碩士論文
【摘要】:變頻調(diào)速技術(shù)是企業(yè)節(jié)能減排、改善工藝流程、提高生產(chǎn)效率的主要技術(shù)之一。隨著電力電子器件、微處理器以及交流電機(jī)控制理論的持續(xù)發(fā)展,變頻調(diào)速技術(shù)還將會(huì)取得巨大進(jìn)步。研究和開發(fā)高性能的矢量控制變頻調(diào)速系統(tǒng)對(duì)于提高異步電機(jī)的調(diào)速范圍、調(diào)速精度以及動(dòng)態(tài)響應(yīng)能力均具有重要意義。 首先對(duì)變頻調(diào)速技術(shù)的發(fā)展和現(xiàn)狀,以及異步電機(jī)調(diào)速策略進(jìn)行了介紹。從異步電機(jī)數(shù)學(xué)模型入手,通過坐標(biāo)變換原理簡化電機(jī)模型,采用轉(zhuǎn)子磁場(chǎng)定向技術(shù)和無速度傳感器技術(shù)構(gòu)建了異步電機(jī)矢量控制調(diào)速系統(tǒng)結(jié)構(gòu)。在該系統(tǒng)中,引入改進(jìn)電壓模型法準(zhǔn)確觀測(cè)轉(zhuǎn)子磁鏈的幅值和相位,并使用PI自適應(yīng)速度估算方法準(zhǔn)確獲得轉(zhuǎn)子轉(zhuǎn)速。為使電機(jī)在起動(dòng)、制動(dòng)以及速度或負(fù)載大范圍突變時(shí)具有良好的動(dòng)態(tài)響應(yīng)能力,通過調(diào)節(jié)器的設(shè)計(jì),實(shí)現(xiàn)了電流和速度閉環(huán)系統(tǒng)的校正。闡述了電壓空間矢量調(diào)制的原理,并給出了其實(shí)現(xiàn)過程,在此基礎(chǔ)上,對(duì)逆變器死區(qū)效應(yīng)進(jìn)行了分析,通過校正基本電壓矢量作用時(shí)間進(jìn)行了死區(qū)補(bǔ)償。針對(duì)電機(jī)參數(shù)的變化對(duì)無速度傳感器矢量控制系統(tǒng)的影響,利用變頻器自身資源,通過SVPWM技術(shù)控制逆變器向異步電機(jī)施加直流或者交流信號(hào)激勵(lì),通過檢測(cè)和處理響應(yīng)信號(hào)獲得較精確的電機(jī)參數(shù)。 在研究了系統(tǒng)模型和系統(tǒng)構(gòu)建方法后,詳細(xì)介紹了以DSP為控制核心的矢量控制變頻器的硬件組成結(jié)構(gòu),并給出系統(tǒng)各部分軟件實(shí)現(xiàn)流程。最后,在所搭建的變頻器實(shí)驗(yàn)平臺(tái)上進(jìn)行了各項(xiàng)性能和功能測(cè)試,實(shí)驗(yàn)結(jié)果證明所設(shè)計(jì)的矢量控制變頻器具有良好的控制性能,與傳統(tǒng)的通用型變頻器相比,該設(shè)計(jì)使異步電機(jī)擁有更加良好的調(diào)速范圍、動(dòng)態(tài)響應(yīng)能力和抗干擾能力。
[Abstract]:Frequency conversion technology is one of the main technologies to save energy and reduce emission, improve technological process and improve production efficiency.With the continuous development of power electronic devices, microprocessors and AC motor control theory, frequency conversion speed regulation technology will make great progress.The research and development of high performance vector control variable frequency speed regulation system is of great significance to improve the speed range, speed control precision and dynamic response ability of asynchronous motor.Firstly, the development and present situation of frequency conversion speed regulation technology and the speed regulation strategy of asynchronous motor are introduced.Starting from the mathematical model of asynchronous motor, the motor model is simplified by coordinate transformation principle, and the structure of vector control speed regulation system of asynchronous motor is constructed by using rotor flux orientation technology and speed sensorless technology.In this system, the amplitude and phase of rotor flux are accurately measured by using the improved voltage model method, and the rotor speed is accurately obtained by using Pi adaptive velocity estimation method.In order to make the motor have good dynamic response ability when starting, braking and sudden change of speed or load in a large range, the current and speed closed-loop system are corrected by the design of regulator.In this paper, the principle of voltage space vector modulation is described, and its realization process is given. On the basis of this, the dead-time effect of inverter is analyzed, and the dead-time compensation is carried out by correcting the action time of basic voltage vector.In view of the influence of motor parameters on the speed sensorless vector control system, the inverter is controlled by SVPWM technology to apply DC or AC signal excitation to the asynchronous motor by using the inverter's own resources.More accurate motor parameters are obtained by detecting and processing response signals.After studying the system model and system construction method, the hardware structure of vector control inverter with DSP as the control core is introduced in detail, and the software realization flow of each part of the system is given.Finally, the performance and function of the inverter are tested on the experimental platform. The experimental results show that the designed vector control inverter has good control performance, compared with the traditional universal inverter.This design makes asynchronous motor have better speed range, dynamic response ability and anti-interference ability.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM343
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 L.A.d.S.Ribeiro,倪覺生;采用脈寬調(diào)制的正弦電壓波形實(shí)時(shí)預(yù)測(cè)異步電機(jī)的電氣參數(shù)(一)[J];變流技術(shù)與電力牽引;2002年02期
2 張麗萍;異步電機(jī)的瞬態(tài)飽和仿真模型研究[J];電氣傳動(dòng)自動(dòng)化;2002年05期
3 杜京義;高電壓大功率異步電機(jī)變頻調(diào)速應(yīng)用技術(shù)探討[J];工礦自動(dòng)化;2002年03期
4 楊曉春;;異步電機(jī)疊頻法溫升試驗(yàn)研究[J];東方電機(jī);2002年03期
5 張艷萍;異步電機(jī)高性能變頻調(diào)速系統(tǒng)控制策略[J];北華大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
6 張寅孩,蔡驪,熊宇,張仲超;高可靠性單相異步電機(jī)頻繁高速啟動(dòng)觸發(fā)電路[J];電力電子技術(shù);2003年02期
7 王曉琳,鄧智泉,張宏荃,嚴(yán)仰光;無軸承異步電機(jī)研究與實(shí)現(xiàn)[J];航空學(xué)報(bào);2003年03期
8 周有為;劉和平;劉述喜;;異步電機(jī)無速度傳感器矢量控制[J];電機(jī)與控制應(yīng)用;2005年09期
9 李少龍,任永德,金愛娟,李航天;多相異步電機(jī)不對(duì)稱運(yùn)行的研究[J];中小型電機(jī);2005年01期
10 李建軍;盛潔波;王翠;桂衛(wèi)華;;異步電機(jī)定轉(zhuǎn)子參數(shù)的辨識(shí)方法研究[J];電工技術(shù)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前10條
1 孟甲凡;;基于Matlab/SIMULINK的異步電機(jī)的建模與仿真[A];第六屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2009年
2 邰永;劉趙淼;;小型異步電機(jī)機(jī)殼表面的通風(fēng)計(jì)算[A];北京力學(xué)會(huì)第15屆學(xué)術(shù)年會(huì)論文摘要集[C];2009年
3 李國進(jìn);胡常林;侯緒達(dá);;異步電機(jī)離線參數(shù)辨識(shí)[A];中南六省(區(qū))自動(dòng)化學(xué)會(huì)第二十九屆學(xué)術(shù)年會(huì)論文集[C];2011年
4 趙波;厲虹;;異步電機(jī)定位控制方法研究[A];冶金自動(dòng)化信息網(wǎng)年會(huì)論文集[C];2004年
5 趙波;厲虹;;異步電機(jī)定位控制方法研究[A];全國冶金自動(dòng)化信息網(wǎng)年會(huì)論文集[C];2004年
6 徐建華;姚來強(qiáng);;異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)的設(shè)計(jì)與仿真[A];自動(dòng)化技術(shù)與冶金流程節(jié)能減排——全國冶金自動(dòng)化信息網(wǎng)2008年會(huì)論文集[C];2008年
7 姚來強(qiáng);徐建華;;異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)的設(shè)計(jì)與仿真[A];第九屆全國電技術(shù)節(jié)能學(xué)術(shù)會(huì)議論文集[C];2007年
8 李謙祥;胡靜濤;;基于虛擬儀器的異步電機(jī)試驗(yàn)系統(tǒng)與應(yīng)用[A];第三屆全國虛擬儀器大會(huì)論文集[C];2008年
9 潘偉;許波;孫曉東;朱q,
本文編號(hào):1735200
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1735200.html