太陽能驅(qū)動有機(jī)朗肯循環(huán)系統(tǒng)動態(tài)特性模擬與分析
本文選題:太陽能 切入點:有機(jī)朗肯循環(huán) 出處:《天津大學(xué)》2014年碩士論文
【摘要】:我國太陽能資源豐富,且資源豐富地區(qū)地廣人稀,太陽能發(fā)電應(yīng)用潛力巨大。但現(xiàn)階段,由于缺乏高效的技術(shù)手段,加之太陽能本身能流密度低等缺點,使得太陽能利用率較低。有機(jī)朗肯循環(huán)(Organic Rankine Cycle,即ORC)具有循環(huán)效率高、蒸發(fā)壓力和溫度低等特點,是一種良好的中低品位能源利用技術(shù)與太陽能具有良好的匹配。因此,發(fā)展太陽能驅(qū)動有機(jī)朗肯循環(huán)發(fā)電技術(shù),對緩解我國能源緊張,完善我國中低品位熱能利用技術(shù)具有重要意義。本文在充分調(diào)研的基礎(chǔ)上完成了200kW級有機(jī)朗肯循環(huán)發(fā)電系統(tǒng)的工況、設(shè)備選型以及系統(tǒng)設(shè)計并搭建了太陽能有機(jī)朗肯循環(huán)發(fā)電實驗系統(tǒng)。系統(tǒng)包括熱源環(huán)路、ORC環(huán)路、冷卻環(huán)路等。采用R123為循環(huán)工質(zhì),以T-55導(dǎo)熱油為熱源,采用管殼式換熱器,工質(zhì)泵采用屏蔽泵;谒O(shè)計的實際系統(tǒng),本文建立了系統(tǒng)動態(tài)性能模型。以質(zhì)量守恒方程、能量守恒方程為基礎(chǔ),利用分布參數(shù)法建立換熱器模型。汽輪機(jī)與泵模型因響應(yīng)遠(yuǎn)小于換熱器而采用穩(wěn)態(tài)模型,其出口參數(shù)分別由壓比、揚(yáng)程以及效率決定;诮⒌哪P,設(shè)計了仿真模擬的研究方法,從模型參數(shù)、參數(shù)間關(guān)系和求解過程三個方面討論了太陽能驅(qū)動ORC系統(tǒng)模型的求解方法。利用Simulink仿真平臺,依據(jù)建立的模型和仿真模擬方法,構(gòu)建了太陽能ORC系統(tǒng)各部件的仿真模塊,并根據(jù)系統(tǒng)部件之間的耦合關(guān)系,將部件連接組合為動態(tài)系統(tǒng)模型。依據(jù)實驗數(shù)據(jù),對系統(tǒng)仿真模型進(jìn)行了檢驗,并對系統(tǒng)在典型日標(biāo)準(zhǔn)工況下以及在云擾動和泵故障等非標(biāo)準(zhǔn)工況下,運(yùn)行性能進(jìn)行模擬。結(jié)果表明:(1)典型日條件下,系統(tǒng)主要部件熱/電功率與太陽直射輻射量變化趨勢相同,夏至日條件下,輻射對系統(tǒng)影響最大,蒸發(fā)器和冷凝器換熱功率、汽輪機(jī)做功功率最大相對變化量分別為18.2%、18.0%以及18.4%,而最大效率變化僅為2.3%;(2)太陽能輻射階躍導(dǎo)致的熱源溫度階躍與系統(tǒng)響應(yīng)時間呈線性關(guān)系,且云擾動對汽輪機(jī)的影響分別較蒸發(fā)器和冷凝器多2.21%和2.67%;(3)系統(tǒng)因?qū)嵊捅门c冷卻環(huán)路泵故障導(dǎo)致系統(tǒng)達(dá)到惡劣工況時間與流量階躍量的倒數(shù)成線性關(guān)系,且冷卻環(huán)路故障的響應(yīng)時間遠(yuǎn)大于導(dǎo)熱油本泵故障系統(tǒng)響應(yīng)時間。
[Abstract]:Our country is rich in solar energy resources, and the area with rich resources is sparsely populated, so the application potential of solar power generation is huge.However, at present, due to the lack of efficient technical means, coupled with the low density of solar energy flow, solar energy utilization is low.Organic Rankine cycle of organic Rankine cycle (ORCs) has the characteristics of high cycle efficiency, low evaporation pressure and low temperature. It is a good low grade energy utilization technology and a good match with solar energy.Therefore, the development of solar energy driven organic Rankine cycle power generation technology is of great significance to alleviate the energy shortage and improve the utilization technology of medium and low grade thermal energy in China.In this paper, based on the full investigation, the operating conditions, equipment selection and system design of 200kW organic Rankine cycle power generation system are completed and the solar organic Rankine cycle power generation experimental system is built.The system includes heat source loop ORC loop, cooling loop and so on.Using R123 as circulating fluid, T-55 heat conduction oil as heat source, tube and shell heat exchanger and shielding pump as working fluid pump.Based on the designed system, the dynamic performance model of the system is established in this paper.Based on the mass conservation equation and the energy conservation equation, the heat exchanger model was established by using the distributed parameter method.The model of steam turbine and pump adopts steady state model because its response is much smaller than that of heat exchanger, and its outlet parameters are determined by pressure ratio, lift and efficiency, respectively.Based on the established model, the research method of simulation simulation is designed, and the method of solar-driven ORC system model is discussed from three aspects: model parameters, relationship between parameters and solution process.Based on the established model and simulation method, the simulation modules of each component of solar energy ORC system are constructed by using Simulink simulation platform. According to the coupling relationship between the components of the system, the components are connected and combined into a dynamic system model.Based on the experimental data, the simulation model of the system is tested, and the performance of the system is simulated under the typical daily standard operating conditions and the non-standard operating conditions such as cloud disturbance and pump failure.The results show that the thermal / electric power of the main components of the system is the same as that of the direct solar radiation under typical daily conditions. Under the Summer Solstice's condition, the radiation has the greatest influence on the system, and the heat transfer power of evaporator and condenser.The maximum relative variation of work power of steam turbine is 18.0% and 18.4%, respectively, while the maximum efficiency change is only 2.3g / 2) the temperature step of heat source caused by solar radiation is linearly related to the response time of the system.The effect of cloud disturbance on steam turbine is 2.21% and 2.67% more than that of evaporator and condenser, respectively.The response time of cooling loop fault is much longer than that of thermal oil pump fault system.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM617;TK519
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁征;孫利霞;由長福;;DSG太陽能槽式集熱器動態(tài)特性[J];太陽能學(xué)報;2009年12期
2 蔣潤花;蔡睿賢;韓巍;隋軍;;太陽能與冷熱電聯(lián)產(chǎn)系統(tǒng)集成[J];工程熱物理學(xué)報;2009年05期
3 李晶;裴剛;季杰;;太陽能有機(jī)朗肯循環(huán)低溫?zé)岚l(fā)電關(guān)鍵因素分析[J];化工學(xué)報;2009年04期
4 張曉偉;郭琳琳;;管殼式換熱器與板式換熱器選型參考[J];科技信息;2009年01期
5 鄭浩;湯珂;金滔;王金波;徐立俊;項靖麒;;有機(jī)朗肯循環(huán)工質(zhì)研究進(jìn)展[J];能源工程;2008年04期
6 袁建麗;林汝謀;金紅光;韓巍;洪慧;;太陽能熱發(fā)電系統(tǒng)與分類(1)[J];太陽能;2007年04期
7 張耀明;王軍;張文進(jìn);孫利國;劉曉輝;;太陽能熱發(fā)電系列文章(2) 塔式與槽式太陽能熱發(fā)電[J];太陽能;2006年02期
8 張耀明;王軍;張文進(jìn);孫利國;劉曉輝;;太陽能熱發(fā)電系列文章(1) 聚光類太陽能熱發(fā)電概述[J];太陽能;2006年01期
9 王武超,趙競?cè)?冷凝器動態(tài)性能仿真研究[J];工程熱物理學(xué)報;2005年04期
10 王革 ,曹興波;燃?xì)忮仩t的選型方法[J];應(yīng)用能源技術(shù);2003年01期
相關(guān)博士學(xué)位論文 前2條
1 王志奇;有機(jī)朗肯循環(huán)低溫?zé)煔庥酂岚l(fā)電系統(tǒng)實驗研究及動態(tài)特性仿真[D];中南大學(xué);2012年
2 李晶;太陽能有機(jī)朗肯循環(huán)中低溫?zé)岚l(fā)電系統(tǒng)的數(shù)值優(yōu)化及實驗研究[D];中國科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前2條
1 楊曉晨;低品位余熱的有機(jī)朗肯循環(huán)發(fā)電系統(tǒng)的實驗分析與優(yōu)化設(shè)計[D];天津大學(xué);2012年
2 趙智博;內(nèi)燃機(jī)廢氣余熱利用有機(jī)朗肯循環(huán)系統(tǒng)工質(zhì)的分析研究[D];天津大學(xué);2012年
,本文編號:1727907
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1727907.html