鉛碳電極的制備及其析氫抑制劑的研究
本文選題:鉛碳電池負極 切入點:HRPSoC 出處:《哈爾濱工業(yè)大學》2014年碩士論文
【摘要】:為了緩解能源危機和環(huán)境污染,世界各國都開始發(fā)展新能源汽車,而混合動力車是其中一個很重要的部分,傳統(tǒng)鉛酸電池由于價格低,大電流放電性能好在輕混動力車上得到了應用,但是傳統(tǒng)鉛酸電池的負極在HRPSoC工況下容易不可逆硫酸鹽化,從而使得鉛酸電池的壽命很短,而鉛碳電池可以有效地延緩負極的不可逆硫酸鹽化。 本文首先研究了單種碳材料P1和P2對電池負極性能的影響,結果表明碳材料P1和P2的加入可以明顯地提高電池負極的HRPSoC循環(huán)性能,在碳含量0.3%~1.2%范圍內時,添加0.9%的P2電池的第一次HRPSoC循環(huán)次數(shù)最多,為18489次,碳材料P1和P2的加入同時也提高了負極的倍率性能。 研究混合碳材料P2和石墨、P2和P3對鉛碳電池負極性能的影響,結果表明在0.9%P2基礎上添加0.1%~0.5%的石墨時,隨著石墨含量的增加,電池負極板的析氫加劇,電池的HRPSoC循環(huán)性能變差。在P2和P3總含量為0.9%時,隨著P3含量的增加,電池負極板的析氫加劇,電池的HRPSoC循環(huán)性能變差。通過總結所使用碳材料對電池HRPSoC循環(huán)性能的影響,認為加到負極板中的碳材料首先應該與鉛和硫酸鉛具有良好的結合力,其次碳材料應該具有較大的比表面積和較大的孔容積,,再次,碳材料應具有高的導電性和較好的電容性。 通過添加硫化鉍、二氧化錫、碳/硫化鉍復合材料、碳/二氧化錫復合材料和沉積了銦、錫和鉛的碳材料來抑制負極板的析氫,并研究它們對電池負極性能的影響。結果表明,它們均可在一定程度上抑制負極板的析氫,但是摻入硫化鉍后電池負極的HRPSoC循環(huán)性能出現(xiàn)了一定的下降,摻入10%(占碳材料質量分數(shù))二氧化錫的電池負極的HRPSoC循環(huán)性能提高了很多,第一次HRPSoC循環(huán)次數(shù)為28191次,而摻入3%和17%二氧化錫的電池負極的HRPSoC循環(huán)性能不佳。添加沉積鉛和錫的碳材料的電池負極的HRPSoC循環(huán)性能有了較大提高,添加沉積銦的碳材料的電池負極的HRPSoC循環(huán)性能與空白電池接近。添加碳/硫化鉍復合材料和碳/二氧化錫復合材料的電池負極的HRPSoC循環(huán)性能得到了極大地提高,第一次HRPSoC循環(huán)次數(shù)分別達到了35487次和32534次,分別是未改性電池的1.9倍和1.8倍。
[Abstract]:In order to alleviate the energy crisis and environmental pollution, countries all over the world began to develop new energy vehicles, and hybrid vehicles are one of the most important parts. Traditional lead-acid batteries are low in price. High current discharge performance has been applied in light hybrid vehicle, but the negative electrode of traditional lead-acid battery is easily irreversibly sulfate salinized under HRPSoC condition, which makes the life of lead-acid battery very short. The lead-carbon battery can effectively delay the irreversible sulfate salinization of the negative electrode. In this paper, the effect of single carbon material P1 and P2 on the negative electrode performance of the battery is studied. The results show that the addition of P1 and P2 can obviously improve the HRPSoC cycle performance of the battery negative electrode, when the carbon content is 0.3% or 1.2%, The addition of 0.9% P2 battery has the highest number of first HRPSoC cycles (18489 cycles). The addition of carbon materials P1 and P2 also improves the performance of the negative electrode. The effects of mixed carbon materials P2 and graphite P 2 and P 3 on the negative electrode properties of lead-carbon batteries were studied. The results showed that the hydrogen evolution of the anode plates increased with the increase of graphite content when 0.1% graphite was added on the basis of 0.9%P2. When the total contents of P2 and P3 are 0.9g, with the increase of P3 content, the hydrogen evolution of the negative plate of the battery increases, and the HRPSoC cycle performance of the battery becomes worse. The effect of the carbon materials used on the HRPSoC cycle performance of the battery is summarized by summarizing the effect of the carbon materials used on the cycle performance of the battery. It is considered that the carbon material added to the negative plate should have good binding force with lead and lead sulfate, and the carbon material should have larger specific surface area and larger pore volume. Thirdly, the carbon material should have high conductivity and good capacitance. By adding bismuth sulfide, tin dioxide, carbon / bismuth sulfide composites, carbon / tin dioxide composites and carbon materials deposited with indium, tin and lead to suppress hydrogen evolution in negative plates, The results show that they can inhibit the hydrogen evolution of the negative plate to some extent, but the HRPSoC cycle performance of the negative electrode of the battery decreases after the addition of bismuth sulfide. The HRPSoC cycle performance of the negative electrode of the battery doped with 10% tin dioxide (mass fraction of carbon material) has been greatly improved, with the first HRPSoC cycle being 28191 times. However, the HRPSoC cycle performance of the negative electrode doped with 3% and 17% tin dioxide is not good. The HRPSoC cycle performance of the negative electrode of the battery with the addition of carbon materials deposited by lead and tin has been greatly improved. The HRPSoC cycling performance of the negative electrode of the carbon material with indium deposition is similar to that of the blank battery. The HRPSoC cycle performance of the negative electrode of the battery with the addition of carbon / bismuth sulfide composite and carbon / tin dioxide composite is greatly improved. The number of first HRPSoC cycles reached 35487 and 32534 respectively, 1.9 times and 1.8 times as much as that of unmodified batteries, respectively.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912.1
【共引文獻】
相關會議論文 前1條
1 裴鋒;賈匴路;吳越;張文華;吁霽;;廢舊磷酸亞鐵鋰電池的回收技術[A];2013年江西省電機工程學會年會論文集[C];2013年
相關博士學位論文 前4條
1 鄭丹;電動汽車對電力系統(tǒng)的影響以及交互作用研究[D];華南理工大學;2013年
2 周南;碳包覆磷酸鐵鋰薄膜及多層結構磷酸鐵鋰介晶材料的制備及其電化學性能研究[D];中南大學;2013年
3 李國春;硫基復合材料制備與電化學性能研究[D];南開大學;2013年
4 劉穎;基于Bir-MnO_2的復合電極材料設計、制備及電容性能研究[D];蘭州大學;2014年
相關碩士學位論文 前10條
1 王宏偉;電動摩托車用六相無刷電機控制系統(tǒng)的研究[D];大連理工大學;2010年
2 付毓瑞;我國新能源汽車在歐洲市場的前景及營銷策略[D];江西財經大學;2010年
3 曹國強;混合動力車用復合電源系統(tǒng)開發(fā)與實驗驗證[D];吉林大學;2011年
4 李光;影響我國電動汽車產業(yè)發(fā)展的關鍵因素研究[D];武漢理工大學;2011年
5 徐舟;鎳氫動力電池在混合動力大巴上的應用研究[D];中南大學;2011年
6 鐘艮林;基于ZigBee技術的蓄電池在線監(jiān)測系統(tǒng)的研究與設計[D];安徽理工大學;2010年
7 陳佰爽;析氫抑制劑對Pb-C電池負極電化學性能的影響[D];哈爾濱工業(yè)大學;2011年
8 王雪非;基于工況仿真的鋰動力電池壽命研究[D];哈爾濱理工大學;2011年
9 尹衡;超聲法制備硫化鉍納米材料及其表征[D];武漢理工大學;2009年
10 張會強;HEV動力電池性能測試平臺控制系統(tǒng)的設計[D];哈爾濱理工大學;2009年
本文編號:1697136
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1697136.html