高增益Z源逆變器研究
本文選題:Z源逆變器 切入點(diǎn):寬輸入 出處:《南京航空航天大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:寬輸入高增益逆變器在新能源開(kāi)發(fā)領(lǐng)域起著至關(guān)重要的作用,它將新能源輸出低壓直流轉(zhuǎn)換為高壓交流電輸出。目前,Z源逆變器做為寬輸入逆變器中的一個(gè)研究熱點(diǎn),具有橋臂無(wú)死區(qū)、輸出波形THD小、可靠性高的優(yōu)點(diǎn),得到了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注。在保留Z源逆變器優(yōu)點(diǎn)的同時(shí),進(jìn)一步提升其電壓增益,滿足新能源發(fā)電低輸入電壓的要求,具有重要的研究意義。本文首先對(duì)耦合電感類(lèi)Z源逆變器進(jìn)行了拓?fù)渫蒲?介紹了該類(lèi)逆變器的工作原理和調(diào)制策略,比較了該類(lèi)逆變器不同拓?fù)涞碾妷涸鲆、器件?yīng)力以及耦合電感的體積,總結(jié)了耦合電感類(lèi)Z源逆變器的特點(diǎn)。其次,在開(kāi)關(guān)電感準(zhǔn)Z源逆變器基礎(chǔ)上,將開(kāi)關(guān)電感單元的一個(gè)二極管替換為電容,提出一種基本升壓?jiǎn)卧獪?zhǔn)Z源逆變器,給出了該逆變器的工作原理及逆變器的各項(xiàng)特性分析,進(jìn)一步提升了電壓增益;在基本升壓?jiǎn)卧獪?zhǔn)Z源逆變器基礎(chǔ)上,將升壓?jiǎn)卧獌呻姼旭詈?提出一種耦合電感升壓?jiǎn)卧獪?zhǔn)Z源逆變器,減少了一個(gè)無(wú)源器件的使用,并利用耦合電感漏感來(lái)抑制二極管電流峰值,分析了耦合電感匝比、漏感、直通占空比以及輸入平均電流對(duì)增益的影響,制作了一臺(tái)原理樣機(jī),進(jìn)行了相關(guān)實(shí)驗(yàn)驗(yàn)證。隨后,本文將Z源逆變器的應(yīng)用拓展到隔離場(chǎng)合,提出一種不對(duì)稱(chēng)全橋Z源逆變器,分析了該逆變器的工作原理,制作了原理樣機(jī)。為使Z源網(wǎng)絡(luò)工作于對(duì)稱(chēng)狀態(tài)以減少采樣電路,同時(shí)減小Z源網(wǎng)絡(luò)中二極管的電壓應(yīng)力,提出對(duì)稱(chēng)式全橋Z源逆變器,列出了其參數(shù)設(shè)計(jì)原則,制作了原理樣機(jī)并進(jìn)行實(shí)驗(yàn)驗(yàn)證。最后,為避免前級(jí)變換器橋臂直通,使整個(gè)系統(tǒng)依舊保持Z源可靠性高的特點(diǎn),本文提出一種交錯(cuò)雙管正激Z源逆變器,前級(jí)采用交錯(cuò)雙管正激變換器。分析了該變換器的工作原理,列出了參數(shù)設(shè)計(jì)及主要的實(shí)現(xiàn)電路等,制作了相應(yīng)的原理樣機(jī)并驗(yàn)證了理論分析的正確性。本文研究的高增益Z源逆變器,針對(duì)Z源逆變器的缺點(diǎn),進(jìn)一步提升了電壓增益,在實(shí)現(xiàn)相同增益時(shí)采用了更短的橋臂直通時(shí)間,減小橋臂直通狀態(tài)下功率器件的導(dǎo)通損耗,提高效率。
[Abstract]:Wide input high gain inverter plays an important role in the field of new energy development. It converts the new energy output from low voltage DC to high voltage AC output. It has the advantages of no dead-time, small output waveform THD, high reliability, and has been widely concerned by scholars at home and abroad. While preserving the advantages of Z-source inverter, the voltage gain of the inverter is further enhanced. It is of great significance to meet the requirements of low input voltage of new energy generation. First of all, the topology of the coupled inductor class Z source inverter is derived, and the working principle and modulation strategy of this kind of inverter are introduced. The voltage gain, device stress and the volume of coupling inductor of this kind of inverter are compared, and the characteristics of Z-source inverter with coupling inductor are summarized. Secondly, based on the switching inductance quasi-Z-source inverter, By replacing a diode of the switch inductance unit with a capacitor, a basic boost unit quasi-Z source inverter is proposed. The working principle of the inverter and the characteristics of the inverter are analyzed. The voltage gain is further enhanced. Based on the basic booster unit quasi Z source inverter, a coupling inductance boost unit quasi Z source inverter is proposed, which reduces the use of a passive device. The coupling inductor leakage inductance is used to suppress the diode current peak. The effects of the coupling inductor turn ratio, leakage inductance, direct duty cycle ratio and input average current on the gain are analyzed. In this paper, the application of Z-source inverter is extended to the isolation situation, and an asymmetric full-bridge Z-source inverter is proposed. The working principle of the inverter is analyzed, and a prototype of the principle is made. In order to make the Z-source network work in symmetrical state to reduce the sampling circuit, At the same time, the voltage stress of diode in Z-source network is reduced, a symmetrical full-bridge Z-source inverter is proposed, the design principle of its parameters is listed, the prototype of the principle is made and verified by experiment. Finally, in order to avoid the straight-through of the bridge arm of the front converter, In this paper, an interleaved two-switch forward Z-source inverter is presented, in which the interleaved two-switch forward converter is used in the front stage. The working principle of the converter is analyzed. The parameter design and main realization circuits are listed, the corresponding principle prototype is made and the correctness of the theoretical analysis is verified. The high gain Z-source inverter studied in this paper has further enhanced the voltage gain in view of the shortcomings of the Z-source inverter. When the same gain is realized, a shorter through time is adopted to reduce the on-loss of the power device and improve the efficiency of the power device in the straight-through state of the bridge arm.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM464
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田維民;陳維榮;彭飛;彭峗;張異;;燃料電池/鋰電池混合動(dòng)力控制系統(tǒng)設(shè)計(jì)[J];電源技術(shù);2013年08期
2 周玉斐;黃文新;趙健伍;趙萍;;抽頭電感準(zhǔn)Z源逆變器[J];中國(guó)電機(jī)工程學(xué)報(bào);2012年27期
3 黃紅橋;危韌勇;陳有根;楊金;;光伏并網(wǎng)微逆變器研究中的關(guān)鍵技術(shù)[J];變頻器世界;2012年03期
4 蔡春偉;曲延濱;盛況;;增強(qiáng)型Z源逆變器[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年S1期
5 李奇;陳維榮;劉述奎;宋文勝;楊順風(fēng);;燃料電池混合動(dòng)力車(chē)輛多能源管理策略[J];電工技術(shù)學(xué)報(bào);2011年S1期
6 丁明;陳中;;遮陰影響下的光伏陣列結(jié)構(gòu)研究[J];電力自動(dòng)化設(shè)備;2011年10期
7 姜志玲;陳維榮;劉小強(qiáng);戴朝華;;燃料電池發(fā)電系統(tǒng)的能量管理控制[J];電源技術(shù);2010年09期
8 湯雨;謝少軍;張超華;;改進(jìn)型Z源逆變器[J];中國(guó)電機(jī)工程學(xué)報(bào);2009年30期
9 丁明;嚴(yán)流進(jìn);茆美琴;楊為;;分布式發(fā)電中燃料電池的建模與控制[J];電網(wǎng)技術(shù);2009年09期
10 田國(guó)勝;田艷兵;丁新平;張民;;Z源逆變器光伏并網(wǎng)系統(tǒng)模型及電路參數(shù)設(shè)計(jì)[J];電力電子技術(shù);2009年04期
相關(guān)博士學(xué)位論文 前1條
1 湯雨;Z源逆變器研究[D];南京航空航天大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 張博;燃料電池發(fā)電系統(tǒng)實(shí)驗(yàn)平臺(tái)的研究與開(kāi)發(fā)[D];浙江大學(xué);2013年
,本文編號(hào):1651067
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1651067.html