基于多信息融合的電網(wǎng)故障診斷技術(shù)研究
發(fā)布時間:2018-03-21 06:13
本文選題:電力系統(tǒng) 切入點(diǎn):故障診斷 出處:《華北電力大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著電網(wǎng)的不斷發(fā)展,不同區(qū)域間的互聯(lián)也越來越緊密,這就使得系統(tǒng)中發(fā)生故障對系統(tǒng)本身的影響也隨之?dāng)U大。目前,電網(wǎng)自動化程度飛速發(fā)展,為故障信息的獲取提供了更為便捷的條件。一旦發(fā)生復(fù)雜故障,控制中心將會有大量的報(bào)警信息迅速涌入,這種情況下要求調(diào)度員抓住報(bào)警實(shí)質(zhì),迅速正確地判斷故障是十分困難的,誤判、漏判的發(fā)生在所難免。因此,需要依靠實(shí)時、高效的電力系統(tǒng)故障診斷系統(tǒng)提供決策參考,為調(diào)度員決策提供輔助判據(jù),以確保電力系統(tǒng)的安全運(yùn)行。 絕大多數(shù)故障診斷方法是利用保護(hù)動作、斷路器跳閘等遙信量信息,采用某種智能算法來進(jìn)行故障元件的識別,這就對開關(guān)和保護(hù)信息的完整性要求性比較高,,故障報(bào)警信息的完整性與準(zhǔn)確性程度將對診斷結(jié)果產(chǎn)生較大影響。在實(shí)際電力系統(tǒng)中,存在著保護(hù)和斷路器的拒動或誤動及其信息傳輸過程中的干擾導(dǎo)致信息丟失等不確定性因素,故障診斷結(jié)果的準(zhǔn)確性不可避免地會受到影響。在此背景下,本論文充分考慮故障后電氣量信息變化的特征,利用電氣量信息實(shí)時、準(zhǔn)確的特點(diǎn),在電網(wǎng)故障診斷中引入電氣量分析,并通過多信息融合來進(jìn)行故障的綜合診斷。 本文首先分析了故障后故障錄波信息的特點(diǎn),建立了基于希爾伯特-黃變換的電氣量故障診斷模型,利用快速本征模態(tài)分解和希爾伯特變換,將電氣量故障信息轉(zhuǎn)換為定量的故障測度,從而進(jìn)行故障識別。其次,深入考慮故障前后WAMS信息變化特點(diǎn),建立了一種基于WAMS量測量信息的故障診斷模型,針對故障后不同元件各自的故障特征,分別建立了不同的判據(jù)模型,在拓?fù)浞治鼋Y(jié)果的基礎(chǔ)上進(jìn)行信息的獲取,可以有效得識別出故障元件。充分利用WAMS中的量測量信息,可以彌補(bǔ)傳統(tǒng)故障診斷方法對于保護(hù)信息缺失、異常等情況下診斷不準(zhǔn)確的缺點(diǎn)。然后,,考慮保護(hù)、斷路器動作的可靠性,在解析模型中引入模糊度,基于開關(guān)量求取解析故障度,結(jié)合希爾伯特-黃變換分析取得的電氣量故障概率表征,通過D-S證據(jù)理論進(jìn)行信息融合,并依據(jù)模糊K-均值算法進(jìn)行決策分析。實(shí)現(xiàn)了多源信息融合的電網(wǎng)故障診斷,以IEEE39節(jié)點(diǎn)系統(tǒng)為例通過仿真驗(yàn)證了所提方法的有效性。最后,基于云南省調(diào)OCS信息平臺,進(jìn)行了云南電網(wǎng)智能在線故障診斷系統(tǒng)的電網(wǎng)拓?fù)浞治、故障信息的獲取和故障診斷等程序的研究開發(fā)。
[Abstract]:With the continuous development of the power grid, the interconnection between different regions is becoming more and more close, which makes the impact of the system fault on the system itself expanded. At present, the degree of power grid automation is developing rapidly. This provides a more convenient condition for the acquisition of fault information. Once a complex fault occurs, the control center will have a large amount of alarm information coming in quickly. In this case, the dispatcher is required to grasp the essence of the alarm. It is very difficult to judge the fault quickly and correctly, and misjudgment is inevitable. Therefore, it is necessary to rely on the real-time and efficient power system fault diagnosis system to provide decision reference and provide auxiliary criterion for dispatcher's decision. To ensure the safe operation of the power system. Most of the fault diagnosis methods are based on remote signal information such as protection action, circuit breaker tripping and so on, and some intelligent algorithm is used to identify the fault components. Therefore, the integrity of switch and protection information is very high, and the integrity and accuracy of fault alarm information will have a great impact on the diagnosis results. In this context, the accuracy of fault diagnosis results will inevitably be affected by the uncertain factors such as protection and the failure or misoperation of circuit breakers and the interference in the process of information transmission, such as information loss. In this paper, the characteristics of electrical information change after fault are fully taken into account. By using the real-time and accurate characteristics of electrical information, the electrical quantity analysis is introduced into the fault diagnosis of power network, and the comprehensive fault diagnosis is carried out through multi-information fusion. In this paper, the characteristics of fault recording information after fault are analyzed, and a fault diagnosis model of electrical quantity based on Hilbert-Huang transform is established. The fast eigenmode decomposition and Hilbert transform are used. The fault information of electrical quantity is transformed into quantitative fault measure to identify the fault. Secondly, considering the characteristics of WAMS information before and after the fault, a fault diagnosis model based on the measurement information of WAMS quantity is established. According to the fault characteristics of different components after the fault, different criterion models are established respectively. Based on the results of topological analysis, the fault elements can be effectively identified, and the quantitative measurement information in WAMS can be fully utilized. It can make up for the shortcomings of traditional fault diagnosis methods in the absence of protection information and abnormal conditions. Secondly, considering the reliability of protection and circuit breaker operation, the ambiguity is introduced into the analytical model. Based on the analytical fault degree of switch quantity and the probability representation of electrical quantity fault obtained by Hilbert-Huang transform, the information fusion is carried out through D-S evidence theory. The fault diagnosis of power network based on multi-source information fusion is realized, and the effectiveness of the proposed method is verified by simulation of IEEE39 node system. Finally, based on Yunnan Province dispatching OCS information platform, the proposed method is implemented. In this paper, the power network topology analysis, fault information acquisition and fault diagnosis program of the intelligent on-line fault diagnosis system of Yunnan power network are studied and developed.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓禎祥,文福拴,張琦;人工智能在電力系統(tǒng)中的應(yīng)用[J];電力系統(tǒng)自動化;2000年02期
2 周明,任建文,李庚銀,徐開理;基于模糊推理的分布式電力系統(tǒng)故障診斷專家系統(tǒng)[J];電力系統(tǒng)自動化;2001年24期
3 束洪春,孫向飛,于繼來;粗糙集理論在電力系統(tǒng)中的應(yīng)用[J];電力系統(tǒng)自動化;2004年03期
4 郭創(chuàng)新;朱傳柏;曹一家;吳欣;;電力系統(tǒng)故障診斷的研究現(xiàn)狀與發(fā)展趨勢[J];電力系統(tǒng)自動化;2006年08期
5 潘
本文編號:1642605
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1642605.html
最近更新
教材專著