單芯電力電纜交流電阻以及復合屏蔽層渦流損耗的計算
本文選題:單芯電纜 切入點:交流電阻 出處:《華南理工大學》2014年碩士論文 論文類型:學位論文
【摘要】:與架空輸電線路相比,電力電纜因具有美觀和更高的可靠性而廣泛用在城市配電網(wǎng)中。隨著城市對電力需求的增加,對電力電纜載流量的要求越來越高。而電纜線芯結(jié)構(gòu)以及電纜護套結(jié)構(gòu)對電纜載流量影響很大。IEC-60287中有實心導體交流電阻以及護套損耗的公式,但是在其它結(jié)構(gòu)和條件下沒有相關(guān)公式和評估方法。本文研究了單芯電力電纜不分割導體與分割導體交流電阻的計算以及電纜復合屏蔽層渦流損耗的計算。 對不分割導體,本文通過參考摩爾根關(guān)于架空輸電線路鋼芯鋁絞線的分析方法并經(jīng)過一定的修正來分析電纜絞線的磁特性,將每層絞線中的電流產(chǎn)生的磁通分為縱向磁通與環(huán)形磁通,根據(jù)電路理論建立計算電纜交流電阻的電壓方程,方程中考慮了絞線絞向以及節(jié)距等參數(shù)的影響。計算結(jié)果表明,各層異向絞合電纜的交流電阻比各層同向絞合電纜的要大幾個百分點;節(jié)距越大,交流電阻越小。不同絞向方式計算結(jié)果的差別雖然不大,但是在大規(guī)模工業(yè)應用中,較小的交流電阻將節(jié)省大量的銅,因此可以作為電纜結(jié)構(gòu)優(yōu)化設計的參考。 對分割導體,本文研究了CIGRE工作組的方法,將每個分割的損耗分為兩部分,一部分為分割本身的作用,另一部分為其它分割的作用。文中特別考慮了實心導體電纜與絕緣絞線電纜的情況,對實心導體的仿真計算指出了理論的適用性;分析了分割導體使用絕緣絞線降低交流電阻的基本原理,并將交流電阻的理論計算值與已有的歷史數(shù)據(jù)作對比,驗證理論正確性。 復合屏蔽層由屏蔽層導線和防水用的金屬箔層組成,IEC-60287中有金屬箔層渦流損耗的計算公式,但是沒有屏蔽層導線渦流損耗的計算公式。本文使用數(shù)值仿真軟件計算屏蔽層導線內(nèi)部渦流損耗以及屏蔽層導線在兩端分別接合且至少有一端不接地時的線間環(huán)流損耗,并與CIGRE工作組的模型計算結(jié)果作對比,,驗證其模型的正確性。計算結(jié)果表明,屏蔽層導線的渦流損耗遠小于同截面積的電纜護套。若屏蔽層導線是直導線,則導線之間的環(huán)流損耗與相同截面積的電纜護套渦流損耗相同;若屏蔽層導線是絕緣絞合導線,則這些導線之間將沒有環(huán)流產(chǎn)生,也即沒有環(huán)流損耗。
[Abstract]:Compared with overhead transmission lines, power cables are widely used in urban distribution networks because of their beautiful appearance and higher reliability. The cable core structure and cable sheath structure have a great influence on the cable carrier current. IEC-60287 has the formula of solid conductor AC resistance and sheath loss. However, there are no relative formulas and evaluation methods under other structures and conditions. In this paper, the calculation of AC resistance of unsplit conductor and split conductor of single core power cable and the calculation of eddy current loss of composite shield layer of cable are studied. For undivided conductors, the magnetic properties of cable strands are analyzed by referring to Morgen's analysis method of steel core aluminum strands of overhead transmission lines and with some modifications. The flux produced by the current in each layer of strands is divided into longitudinal flux and annular flux. According to the circuit theory, the voltage equation is established to calculate the AC resistance of the cable. The influence of the tangential direction and pitch of the cable is considered in the equation. The calculation results show that, The AC resistance of each layer is several percentage points larger than that of the same layer of twisted cable. The larger the pitch, the smaller the AC resistance. Small AC resistance will save a lot of copper, so it can be used as a reference for cable structure optimization design. For the partitioned conductor, this paper studies the method of CIGRE working group. The loss of each partition is divided into two parts, one is the function of the segmentation itself. The other part is the function of other partitioning. In this paper, the case of solid conductor cable and insulated strand cable is specially considered, and the theoretical applicability of the simulation calculation of solid conductor is pointed out. The basic principle of using insulated strand to reduce AC resistance is analyzed, and the theoretical calculation value of AC resistance is compared with existing historical data to verify the correctness of the theory. The composite shielding layer consists of a shield wire and a waterproof metal foil layer. The calculation formula for eddy current loss of the metal foil layer in IEC-60287 is obtained. But there is no formula for the eddy current loss of the shielded conductor. In this paper, the eddy current loss inside the shield conductor and the inter-line circulation loss of the shielded wire joining at both ends and at least one end without grounding are calculated by using the numerical simulation software. The results are compared with those of the CIGRE working group to verify the correctness of the model. The calculation results show that the eddy current loss of the shielded wire is much smaller than that of the cable sheath with the same sectional area, if the shielded wire is a straight conductor, The circulation loss between the conductors is the same as the eddy current loss of the cable sheath with the same cross-sectional area; if the shielded conductor is an insulated twisted conductor, there will be no circulation between these conductors, that is, there will be no circulation loss.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM75
【參考文獻】
相關(guān)期刊論文 前10條
1 易鵬程;;多回并列敷設電纜群渦流損耗問題的研究[J];安徽水利水電職業(yè)技術(shù)學院學報;2011年02期
2 梁永春;孟凡鳳;王正剛;李忠魁;李彥明;;電纜群鄰近效應的計算和優(yōu)化排列[J];電工電能新技術(shù);2006年02期
3 梁永春;李彥明;柴進愛;王正剛;李忠魁;;地下電纜群穩(wěn)態(tài)溫度場和載流量計算新方法[J];電工技術(shù)學報;2007年08期
4 張式訓,張洪明;大容量地下輸電技術(shù)分析[J];電網(wǎng)技術(shù);1996年06期
5 李小峰;唐興佳;;高壓交聯(lián)聚乙烯絕緣海底電纜載流量分析[J];廣東輸電與變電技術(shù);2010年06期
6 賈欣,曹曉瓏,喻明;單芯電纜計及護套環(huán)流時載流量的計算[J];高電壓技術(shù);2001年01期
7 梁永春;柴進愛;李彥明;王正剛;李忠魁;;有限元法計算交聯(lián)電纜渦流損耗[J];高電壓技術(shù);2007年09期
8 魯志偉;于建立;葛麗婷;展鵬;;管道內(nèi)填充導熱介質(zhì)提高電纜載流量[J];高電壓技術(shù);2009年11期
9 趙健康;雷清泉;王曉兵;樊友兵;劉松華;;復雜運行條件下交聯(lián)電纜載流量研究[J];高電壓技術(shù);2009年12期
10 劉英;;高壓電纜金屬護套及鎧裝結(jié)構(gòu)的損耗計算[J];電線電纜;2013年02期
本文編號:1638452
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1638452.html