吸收升溫Kalina發(fā)電循環(huán)的模擬及實(shí)驗研究
發(fā)布時間:2018-03-18 12:57
本文選題:Kalina 切入點(diǎn):吸收 出處:《天津大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:Kalina地?zé)岚l(fā)電廠的尾水排放溫度較高,針對此問題,文中對Kalina發(fā)電循環(huán)進(jìn)行優(yōu)化改進(jìn),結(jié)合第二類吸收式熱泵提出了吸收升溫Kalina循環(huán)。該循環(huán)以經(jīng)過一次換熱之后溫度較高的地?zé)嵛菜鳛槲帐綗岜玫尿?qū)動熱源,通過換熱的方式,將稀氨水溶液與氨氣在吸收器中完成吸收過程時所放出的熱量傳遞給溫度較低的氨水基本溶液,成功的提高了發(fā)生器入口工質(zhì)的溫度,進(jìn)而增加了進(jìn)入汽輪機(jī)做功的氨蒸汽的流量。文中建立了數(shù)學(xué)計算模型并采用engineering equation solver(EES)工程計算軟件編寫熱力學(xué)計算程序,分析其在理論上的可行性,并對影響循環(huán)性能的主要參數(shù)進(jìn)行了影響分析,同時采用化工流程模擬軟件ASPEN Plus建立系統(tǒng)模型加以驗證。模擬結(jié)果表明,在相同的工況條件下吸收升溫Kalina循環(huán)的凈發(fā)電量相比于Kalina循環(huán),從2098.7 kW上升到2241.24 kW,提高6.8%左右。吸收升溫Kalina循環(huán)的凈發(fā)電量隨著熱源溫度的升高而逐漸升高,但是其效率存在一個最佳值,對應(yīng)的最佳熱源溫度為110℃左右。冷源溫度與乏汽壓力以及工質(zhì)濃度存在一定關(guān)系,計算結(jié)果表明,當(dāng)工質(zhì)濃度上升,其可以匹配的冷源溫度范圍越寬廣。計算還發(fā)現(xiàn)隨著冷源溫度的升高,系統(tǒng)凈發(fā)電量會有所降低,但是隨著汽輪機(jī)入口壓力的升高,系統(tǒng)凈發(fā)電量會增加。當(dāng)汽輪機(jī)入口壓力增加到一定程度時將導(dǎo)致工質(zhì)泵耗功急劇增加,造成系統(tǒng)凈發(fā)電量的降低。此外,系統(tǒng)凈發(fā)電量隨著氨水基本溶液濃度的升高而升高,但濃度超過最佳值就會造成凈發(fā)電量的下降,不同的汽輪機(jī)入口壓力對應(yīng)著不同的最佳工質(zhì)濃度。為了進(jìn)一步研究該循環(huán)提高工質(zhì)溫度的效果,在理論分析的基礎(chǔ)上,根據(jù)實(shí)驗條件,搭建了吸收升溫子系統(tǒng)實(shí)驗臺,對影響其升溫性能的主要因素進(jìn)行了實(shí)驗研究。實(shí)驗結(jié)果表明,熱源溫度以及氨水基本溶液濃度的升高有助于提高實(shí)驗臺的升溫性能,但是冷源溫度的升高則對實(shí)驗臺的升溫性能具有抑制作用。保證吸收器管內(nèi)流體處于湍流階段有助于提高實(shí)驗臺的升溫性能,同時流量比(稀溶液泵流量與液氨泵流量的比值)的升高在一定程度上也有助于提高實(shí)驗臺的升溫性能,但是超過最佳流量比則對實(shí)驗臺升溫性能的提高沒有幫助。實(shí)驗系統(tǒng)中加入納米顆粒在一定程度上有利于實(shí)驗臺升溫性能的提高,并且存在著最佳的添加比例。但是當(dāng)納米顆粒的濃度達(dá)到一定程度(0.3%左右)時,繼續(xù)添加納米顆粒對提高實(shí)驗臺的升溫性能沒有幫助。
[Abstract]:The tail water discharge temperature of Kalina geothermal power plant is high. In order to solve this problem, the Kalina generation cycle is optimized and improved in this paper. Combined with the second kind of absorption heat pump, the absorption heating Kalina cycle is proposed. The geothermal tailings with higher temperature after primary heat transfer are used as the driving heat source of the absorption heat pump. The heat released from dilute ammonia solution and ammonia gas in the absorber was transferred to the basic solution of ammonia water with lower temperature, which successfully raised the temperature of the working fluid at the inlet of the generator. Furthermore, the flow rate of ammonia steam entering the work of steam turbine is increased. In this paper, the mathematical calculation model is established and the thermodynamic calculation program is compiled by engineering equation solver EES, and its feasibility in theory is analyzed. At the same time, the main parameters affecting the cycle performance are analyzed, and the system model is established by the chemical process simulation software ASPEN Plus. The simulation results show that, Compared with the Kalina cycle, the net power generation of the absorption heating Kalina cycle under the same operating conditions increased by about 6.8%, from 2098.7 kW to 2241.24 kW. The net generating capacity of the absorption heating Kalina cycle gradually increased with the increase of the heat source temperature. However, there is an optimum value of its efficiency, and the corresponding optimum heat source temperature is about 110 鈩,
本文編號:1629675
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1629675.html
最近更新
教材專著