無(wú)人機(jī)主推進(jìn)高力能密度永磁電動(dòng)機(jī)關(guān)鍵技術(shù)研究
本文選題:無(wú)人機(jī) 切入點(diǎn):主推進(jìn)永磁電機(jī) 出處:《沈陽(yáng)工業(yè)大學(xué)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:無(wú)人機(jī)主推進(jìn)永磁電動(dòng)機(jī)(Main Propulsion Permanent-magnet Motor,簡(jiǎn)稱MPPM)要求具有較高的力能密度(包括功率密度和轉(zhuǎn)矩密度)。同時(shí)無(wú)人機(jī)的飛行工況復(fù)雜,分為地面滑跑、起飛爬升、巡航、降落和著陸五個(gè)階段。電機(jī)在爬升階段時(shí)力能密度最高,在巡航階段初期時(shí)溫升值最高。高力能密度及復(fù)雜工況給電機(jī)設(shè)計(jì)和分析帶來(lái)新問(wèn)題,本文圍繞無(wú)人機(jī)主推進(jìn)高力能密度永磁電動(dòng)機(jī)的關(guān)鍵技術(shù)展開(kāi)研究,主要內(nèi)容如下: 根據(jù)MPPM對(duì)體積和重量的要求以及熱負(fù)荷達(dá)到普通電機(jī)5倍的特殊性,本文著重研究了超高力能密度永磁電動(dòng)機(jī)設(shè)計(jì)方法。在理論上,研究了電機(jī)結(jié)構(gòu)參數(shù)對(duì)電機(jī)力能密度影響,對(duì)比不同極數(shù)、極弧系數(shù)、永磁體厚度和電機(jī)尺寸對(duì)氣隙磁密、交直軸電抗和齒槽轉(zhuǎn)矩的影響。對(duì)MPPM磁路結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì),分析對(duì)比不同隔磁橋、轉(zhuǎn)子外圓的不均勻氣隙、永磁體位置對(duì)電機(jī)的氣隙磁密、空載感應(yīng)電勢(shì)的影響,給出了MPPM基本優(yōu)化設(shè)計(jì)方法。并研究了高頻高磁密下MPPM鐵心損耗計(jì)算方法,重點(diǎn)考慮局部磁滯回環(huán)對(duì)磁滯損耗的影響,引入設(shè)定局部磁滯環(huán)的損耗系數(shù)K min,給出高電磁負(fù)荷下鐵心損耗修正系數(shù)計(jì)算公式。 高力能密度將導(dǎo)致電機(jī)溫升提高,,溫升將成為考核主推進(jìn)電機(jī)的重要指標(biāo)。為提高力能密度MPPM采用開(kāi)啟式結(jié)構(gòu),通風(fēng)散熱效果好,但冷卻空氣雷諾數(shù)超過(guò)10000,流體強(qiáng)紊流特點(diǎn)增加了溫度場(chǎng)計(jì)算的復(fù)雜性。本文針對(duì)電動(dòng)機(jī)開(kāi)啟式結(jié)構(gòu)特點(diǎn),根據(jù)流體力學(xué)及傳熱學(xué)理論,考慮了高頻下的集膚效應(yīng)對(duì)銅耗的影響,建立強(qiáng)風(fēng)冷卻條件下流固耦合物理模型與數(shù)學(xué)模型,研究了MPPM溫度場(chǎng)給出主要固體部件及流體的溫度分布,并分析主要部件溫升隨工況變化曲線。研究給出了不同熱負(fù)荷狀態(tài)下,不同爬升時(shí)間和爬升角度,MPPM溫升特性,從理論和實(shí)踐上,給出了無(wú)人機(jī)MPPM熱負(fù)荷設(shè)計(jì)范圍為30005500A2/cm·mm2,為主推進(jìn)電動(dòng)機(jī)熱負(fù)荷設(shè)計(jì)提供理論參考。 MPPM的超高力能密度,對(duì)機(jī)械強(qiáng)度和振動(dòng)提出了更高的要求。本文基于彈性力學(xué)理論,建立了主要部件的機(jī)械強(qiáng)度計(jì)算模型,并分析了不同飛行工況下的應(yīng)力分布。根據(jù)應(yīng)力分析結(jié)構(gòu),研究了端蓋支撐筋對(duì)機(jī)殼機(jī)械強(qiáng)度的影響,基于模態(tài)分析理論對(duì)MPPM進(jìn)行振動(dòng)特性分析,基于彈性矩陣?yán)碚搶?duì)不同頻率下的振型進(jìn)行了分析。從系統(tǒng)的角度,考慮無(wú)人機(jī)實(shí)際運(yùn)行中氣流波動(dòng)造成振動(dòng)的頻率,研究MPPM的振動(dòng)頻率和質(zhì)量參與系數(shù),給出避免發(fā)生共振的方法。 成功研制MPPM樣機(jī),完成首飛試驗(yàn)測(cè)試。對(duì)樣機(jī)進(jìn)行了地面、風(fēng)洞與飛行試驗(yàn)。樣機(jī)性能指標(biāo):重量20kg,功率25kW,轉(zhuǎn)矩100N·m,力能密度6.25kW·N·m/kg2,遠(yuǎn)遠(yuǎn)高于國(guó)內(nèi)水平。飛行試驗(yàn)中溫升最高值出現(xiàn)在巡航初期,機(jī)殼最高溫升89.49K,鐵心最高溫升105.07K。對(duì)比分析MPPM各飛行工況下仿真結(jié)果、風(fēng)洞試驗(yàn)數(shù)據(jù)和飛行試驗(yàn)數(shù)據(jù),證明了理論分析的正確性。
[Abstract]:The main propulsion permanent magnet motor (MPPMM) of UAV requires high force and energy density (including power density and torque density). At the same time, UAV flight conditions are complex, such as ground running, take-off and climb, cruise, etc. The motor has the highest force energy density in the climbing stage and the highest temperature appreciation at the initial stage of cruising. The high power energy density and complex working conditions bring new problems to the design and analysis of the motor. This paper focuses on the key technology of high energy density permanent magnet motor (PMSM) for UAV. The main contents are as follows:. According to the requirement of volume and weight of MPPM and the particularity of heat load reaching 5 times of ordinary motor, the design method of ultra-high energy density permanent magnet motor is studied in this paper. The influence of motor structure parameters on the force and energy density of the motor is studied. The effects of different pole numbers, polar arc coefficients, thickness of permanent magnet and motor size on air gap magnetic density, cross straight axis reactance and tooth slot torque are studied. The MPPM magnetic circuit structure is optimized. The effects of different magnetic isolation bridges, non-uniform air gap of rotor outer circle and permanent magnet position on the airgap magnetic density and no-load induction potential of the motor are analyzed and compared. The basic optimization design method of MPPM is given, and the calculation method of MPPM core loss under high frequency and high magnetic density is studied. The effect of local hysteresis loop on hysteresis loss is considered emphatically. In this paper, the loss coefficient K _ min of local hysteresis loop is introduced, and the calculating formula of core loss correction coefficient under high electromagnetic load is given. The high energy density will lead to the increase of motor temperature rise, and temperature rise will become an important index to evaluate the main push motor. In order to increase the force energy density MPPM, the open structure is adopted, and the ventilation and heat dissipation effect is good. But the Reynolds number of cooled air is more than 10 000, and the characteristics of strong turbulence increase the complexity of temperature field calculation. According to the characteristics of open structure of motor, according to the theory of fluid mechanics and heat transfer, the influence of skin effect at high frequency on copper consumption is considered in this paper. The physical model and mathematical model of fluid-solid coupling under strong wind cooling are established. The temperature distribution of the main solid components and fluids in the MPPM temperature field is studied. The temperature rise curves of main components are analyzed. The temperature rise characteristics of MPPM with different climbing time and angle under different heat loads are given theoretically and practically. The design range of MPPM thermal load for UAV is 30005500A2 / cm 路mm-2, which provides a theoretical reference for the design of thermal load of propulsion motor. The ultra-high force energy density of MPPM has put forward higher requirements for mechanical strength and vibration. Based on the theory of elasticity, the mechanical strength calculation model of main components is established in this paper. According to the stress analysis structure, the influence of the end cap bracing bars on the mechanical strength of the shell is studied, and the vibration characteristics of the MPPM are analyzed based on the modal analysis theory. Based on the elastic matrix theory, the vibration modes at different frequencies are analyzed. From the system point of view, the vibration frequency and mass participation coefficient of the MPPM are studied by considering the frequency of the vibration caused by the airflow fluctuation in the actual operation of the UAV. The method of avoiding resonance is given. The MPPM prototype was successfully developed, and the first flight test was completed. Wind tunnel and flight test. Performance index of prototype: weight 20 kg, power 25 kW, torque 100 N 路m, force and energy density 6.25 kW 路N 路m 路kg 2, which is much higher than domestic level. The maximum temperature rise of the casing is 89.49kg. the maximum temperature rise of the iron core is 105.07k. the correctness of the theoretical analysis is proved by comparing and analyzing the simulation results under the different flight conditions of MPPM, the wind tunnel test data and the flight test data.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM351
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莫岳平,胡敏強(qiáng),金龍,顧菊平,石斌,王心堅(jiān),徐志科;振動(dòng)模態(tài)與超聲波電機(jī)性能關(guān)系的研究[J];電工技術(shù)學(xué)報(bào);2002年03期
2 郭偉,趙爭(zhēng)鳴;新型同步磁阻永磁電機(jī)的轉(zhuǎn)矩特性和控制分析[J];電工技術(shù)學(xué)報(bào);2005年01期
3 李偉力;楊雪峰;顧德寶;馮勇利;;多風(fēng)路空冷汽輪發(fā)電機(jī)定子內(nèi)流體流動(dòng)與傳熱耦合計(jì)算與分析[J];電工技術(shù)學(xué)報(bào);2009年12期
4 丁文;梁得亮;;一種開(kāi)關(guān)磁阻電機(jī)非線性磁鏈與轉(zhuǎn)矩建模方法[J];電機(jī)與控制學(xué)報(bào);2008年06期
5 胡笳;羅應(yīng)立;李志強(qiáng);劉明基;;永磁電動(dòng)機(jī)不同運(yùn)行條件下的損耗研究[J];電機(jī)與控制學(xué)報(bào);2009年01期
6 丁樹(shù)業(yè);孫兆瓊;苗立杰;徐殿國(guó);;大型發(fā)電機(jī)定子主絕緣溫度場(chǎng)數(shù)值研究[J];電機(jī)與控制學(xué)報(bào);2010年07期
7 孔曉光;王鳳翔;徐云龍;邢軍強(qiáng);;高速永磁電機(jī)鐵耗的分析和計(jì)算[J];電機(jī)與控制學(xué)報(bào);2010年09期
8 白海軍;張鳳閣;;外永磁轉(zhuǎn)子爪極電機(jī)轉(zhuǎn)矩研究[J];電機(jī)與控制學(xué)報(bào);2011年05期
9 楊玉波;王秀和;朱常青;;電樞槽口寬度對(duì)內(nèi)置式永磁同步電機(jī)齒槽轉(zhuǎn)矩的影響[J];電機(jī)與控制學(xué)報(bào);2011年07期
10 崔淑梅;于天達(dá);宋立偉;;基于ANSYS和SYSNOISE的電機(jī)噪聲仿真分析方法[J];電機(jī)與控制學(xué)報(bào);2011年09期
本文編號(hào):1617348
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1617348.html