高壓異步電機轉(zhuǎn)子故障智能診斷方法研究
發(fā)布時間:2018-03-15 20:34
本文選題:高壓異步電機 切入點:電機轉(zhuǎn)子故障 出處:《長沙理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著現(xiàn)代科學(xué)技術(shù)的進步和電力系統(tǒng)規(guī)模日趨龐大,電機在現(xiàn)代工業(yè)生產(chǎn)中充當(dāng)著越來越重要的角色。電機故障不僅會損壞電機本身,影響整個系統(tǒng)的正常運轉(zhuǎn),嚴重的情況下甚至危及人身安全,造成巨大的經(jīng)濟損失和重大的社會影響,因此對電機故障的診斷具有重要意義和工程實用價值。研究感應(yīng)電機的監(jiān)測和故障診斷技術(shù),對預(yù)防感應(yīng)電機故障的發(fā)生,及時發(fā)現(xiàn)并消除故障,保證感應(yīng)電機可靠運行,提高生產(chǎn)效率都具有十分重要的意義。論文在闡敘國內(nèi)外電機故障診斷研究現(xiàn)狀的基礎(chǔ)上,對高壓異步電機轉(zhuǎn)子的基本結(jié)構(gòu)和轉(zhuǎn)子故障進行了簡單的分析。在此基礎(chǔ)上提出了兩種基于不同故障診斷機理的電機轉(zhuǎn)子故障診斷方法:“質(zhì)樸型-貝葉斯網(wǎng)絡(luò)拓撲模型”和“小波神經(jīng)網(wǎng)絡(luò)的故障診斷網(wǎng)絡(luò)模型”。由于電機系統(tǒng)故障信息中存在許多不確定性,電機轉(zhuǎn)子出現(xiàn)故障時,在傳統(tǒng)方法的基礎(chǔ)上,通過綜合樣本信息和先驗信息,建立基于轉(zhuǎn)子系統(tǒng)故障類型和對應(yīng)的故障征兆的貝葉斯網(wǎng)絡(luò)模型。貝葉斯網(wǎng)絡(luò)作為目前推理領(lǐng)域和不確定性知識表達的的有效模型之一,能高效的推理和表達不確定性知識和概率推理。同時,電機的振動故障信往往包含大量的短時突發(fā)、時變的成分,而傅里葉變換采用的方法是將信號從頻域和時域整體角度出發(fā),缺乏時頻局部性,不能準確的對這些非平穩(wěn)隨機信號分析,故達不到故障信號特征提取的要求。小波神經(jīng)網(wǎng)絡(luò)就是在研究電機振動信號的基礎(chǔ)上建立的故障診斷模型。采用小波時頻分析技術(shù)對電機故障信號消噪濾波并提取故障特征,然后用BP神經(jīng)網(wǎng)絡(luò)進行故障識別,最終達到故障診斷的目的。最后對異步電機典型故障轉(zhuǎn)子不對中、轉(zhuǎn)子質(zhì)量不平衡和軸承摩擦等故障用上面提到的兩種不同的診斷方法建立模型進行故障診斷。結(jié)果證明了論文所設(shè)計的兩種方法能夠?qū)Ω邏寒惒诫姍C的故障有效地進行診斷,提高了電機故障診斷的準確性。
[Abstract]:With the progress of modern science and technology and the increasingly large scale of power system, motor plays an increasingly important role in modern industrial production. Motor failure will not only damage the motor itself, but also affect the normal operation of the whole system. Under serious circumstances, even endangering personal safety, causing huge economic loss and great social impact, it is of great significance and practical engineering value to diagnose motor fault. The monitoring and fault diagnosis technology of induction motor is studied. It is of great significance to prevent the occurrence of the fault of induction motor, to find and eliminate the fault in time, to ensure the reliable operation of the induction motor and to improve the production efficiency. The basic structure of rotor and rotor fault of HV asynchronous motor are simply analyzed. On the basis of this, two methods of rotor fault diagnosis based on different fault diagnosis mechanisms are proposed: "simple Bayesian network" The fault diagnosis network model of wavelet neural network. Because there are many uncertainties in the fault information of motor system, When the motor rotor is in trouble, on the basis of the traditional method, by synthesizing the sample information and the prior information, A Bayesian network model based on rotor system fault type and corresponding fault symptoms is established. Bayesian network is one of the effective models of reasoning field and uncertain knowledge representation. It can efficiently infer and express uncertain knowledge and probabilistic reasoning. At the same time, the vibration fault letter of motor often contains a large number of short-time burst and time-varying components. The method of Fourier transform is to analyze these non-stationary random signals from the whole angle of frequency domain and time domain without time-frequency localization. Wavelet neural network is a fault diagnosis model established on the basis of studying motor vibration signal. Wavelet time-frequency analysis technology is used to filter and extract fault feature of motor fault signal. Then BP neural network is used to identify the fault, and finally the purpose of fault diagnosis is achieved. Finally, the typical fault rotor of asynchronous motor is misaligned. The fault diagnosis of rotor mass imbalance and bearing friction is based on two different diagnosis methods mentioned above. The results show that the two methods designed in this paper can effectively diagnose the faults of high voltage asynchronous motor. The accuracy of motor fault diagnosis is improved.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM343
【參考文獻】
相關(guān)期刊論文 前2條
1 顏秋容;劉欣;尹建國;;基于小波理論的電力變壓器振動信號特征研究[J];高電壓技術(shù);2007年01期
2 武建軍;馬振利;秦瑞勝;楊旭;張越萌;;小波技術(shù)在車載發(fā)動機泵機組故障診斷中的應(yīng)用[J];機床與液壓;2007年11期
,本文編號:1616699
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1616699.html
最近更新
教材專著