納米氧化釕復(fù)合電極材料的制備及其性能研究
發(fā)布時間:2018-03-13 01:03
本文選題:超級電容器 切入點(diǎn):氧化釕 出處:《電子科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:在節(jié)能環(huán)保日益成為主題的今天,綠色環(huán)保能源、混合動力汽車、電動汽車以及高端消費(fèi)電子產(chǎn)品快速發(fā)展,人們對電源裝置尤其是移動電源設(shè)備的要求也越來越多樣化。電源裝置不僅要求具有高的能量密度,而且要具有高的功率密度,傳統(tǒng)的電容器和蓄電池已經(jīng)不能滿足新型電子設(shè)備的要求。一種新型的綠色環(huán)保儲能元器件—超級電容器,因兼具有傳統(tǒng)電容器高的功率密度和普通電池高的能量密度等突出優(yōu)點(diǎn),正在被廣泛運(yùn)用在交通能源、智能電網(wǎng)、國防武器等高端領(lǐng)域,隨著超級電容器性能的不斷改善,未來在小功率設(shè)備、綠色環(huán)保新能源等方面可以完全取代蓄電池,因此對超級電容器的研究具有廣闊的應(yīng)用前景。本文以氧化釕電極材料為研究對象,采用不同的制備方法和工藝,制備了不同體系的氧化釕基復(fù)合電極材料,包括氧化釕/氧化銅復(fù)合電極材料、氧化釕/活性炭復(fù)合電極材料,氧化釕/氧化錳復(fù)合電極材料,通過SEM、XRD、TGA等分析表征手段以及循環(huán)伏安、恒流充放電、電化學(xué)阻抗譜等電化學(xué)測試方法,對其進(jìn)行電化學(xué)性能測試。主要研究內(nèi)容如下:1.采用溶膠-凝膠法和低熱固相反應(yīng)法分別制備了無定型納米氧化釕和氧化銅電極材料。系統(tǒng)的研究了氧化釕/氧化銅復(fù)合電極在不同電解液、粘結(jié)劑、電極成型壓力下的電化學(xué)性能。結(jié)果表明:復(fù)合電極材料中氧化銅含量為30%時,電解液選擇為2mol/L KOH,粘結(jié)劑PVDF含量為7%,電極成型壓力在10MPa下復(fù)合電極性能最佳,比容量可達(dá)643F/g,等效串聯(lián)內(nèi)阻為0.12Ω,1000次循環(huán)充放電之后,比容量仍保持在81.3%。2.通過液相共沉積法制備了氧化釕/活性炭復(fù)合電極材料,系統(tǒng)的研究了復(fù)合電極的電化學(xué)性能,同時討論了導(dǎo)電劑CNTs、AB、KS6石墨、Super P Li對復(fù)合電極的性能影響。結(jié)果表明:改性活性炭的加入提高了氧化釕的導(dǎo)電性能,活性炭含量為30%,導(dǎo)電劑為CNTs時復(fù)合電極的電化學(xué)性能最佳,比容量達(dá)到689F/g,內(nèi)阻為0.19Ω,800次循環(huán)充放電之后容量基本保持在穩(wěn)定的狀態(tài)。3.采用水熱合成反應(yīng)法制備了纖維直徑大約為100nm,長度在1.5μm左右的納米纖維狀二氧化錳電極材料,初步研究了氧化釕所占質(zhì)量比60%時復(fù)合電極的電化學(xué)性能。結(jié)果表明:復(fù)合電極在電流密度為4mA/cm2下,比容量為352F/g,且在循環(huán)充放電500次之后比容量仍保持在85.3%左右。
[Abstract]:Today, with energy saving and environmental protection increasingly becoming the theme, green energy, hybrid electric vehicles, electric vehicles and high-end consumer electronics are developing rapidly. The requirements of power supply devices, especially mobile power devices, are becoming more and more diversified. Power supply devices need not only high energy density, but also high power density. Traditional capacitors and batteries can no longer meet the requirements of new electronic equipment. A new type of green environmental energy storage components-supercapacitors, Because of its outstanding advantages such as high power density of conventional capacitors and high energy density of ordinary batteries, it is widely used in high-end fields such as transportation energy, smart grid, defense weapons and so on. With the continuous improvement of the performance of supercapacitors, In the future, the storage battery can be completely replaced by low power equipment and green new energy, so the research of supercapacitor has a broad application prospect. In this paper, ruthenium oxide electrode material is taken as the research object. Ruthenium oxide / copper oxide composite electrode materials, ruthenium oxide / activated carbon composite electrode materials and ruthenium oxide / manganese oxide composite electrode materials were prepared by different preparation methods and processes. By means of XRDGA, cyclic voltammetry, constant current charge and discharge, electrochemical impedance spectroscopy, etc. The main research contents are as follows: 1. Amorphous nanocrystalline ruthenium oxide and copper oxide electrode materials were prepared by sol-gel method and low-heat solid state reaction method respectively. Ruthenium oxide / oxygen oxide was systematically studied. Cupric composite electrode in different electrolyte, The results show that when the copper oxide content in the composite electrode material is 30%, the electrolyte is chosen as 2 mol / L KOHH, the binder PVDF content is 7%, and the electrode forming pressure is 10 MPA. The specific capacity can reach 643F / g and the equivalent series internal resistance is 0.12 惟 / 1 000 cycles, but the specific capacity remains at 81.33.2. the ruthenium oxide / activated carbon composite electrode material was prepared by liquid phase co-deposition method, and the electrochemical properties of the composite electrode were systematically studied. At the same time, the effect of the conductive agent CNTsABA KS6 graphite superPLi on the performance of the composite electrode was discussed. The results showed that the conductivity of the composite electrode was improved with the addition of modified activated carbon, and the electrochemical performance of the composite electrode was the best when the content of activated carbon was 30 and the conductive agent was CNTs. The specific capacity is 689 F / g, and the internal resistance is 0.19 惟 路m ~ (-1). After 800 cycles of charge and discharge, the capacity remains stable. 3. The nanoscale fibrous manganese dioxide electrode material with fiber diameter of about 100 nm and length of about 1.5 渭 m has been prepared by hydrothermal synthesis reaction. The electrochemical performance of the composite electrode at the mass ratio of Ru _ 2O _ 3 to Ru _ 2O _ 3 was preliminarily studied. The results showed that the specific capacity of the composite electrode was 352F / g at the current density of 4 Ma / cm ~ 2, and the specific capacity of the composite electrode remained about 85.3% after 500 cycles of charge and discharge.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 馬婷婷;尤杰;秦國義;許思勇;張宇峰;;熱分解法制備RuO_2-IrO_2/Ta超級電容器薄膜電極材料研究[J];貴金屬;2012年01期
,本文編號:1604092
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1604092.html
最近更新
教材專著